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PFOREWORD

The Harry Diamond Laboratories located in Adelphi, Maryland served

as the site for the 22nd Conference on the Design of Experiments in Army
Researchj Development, and Testing held 20-22 October, 1976. This Any
agency co-hosted the first three conferences in this series with the
National Bureau of Standards when it was located there. It was a pleasure
to meet in the new quarters of the Harry Diamond Laboratories and take
advantage of their excellent facilities. Planning for these meetings
requires much effort and attention to detail and we are indebted to
Dr. Joseph Kirschner who served as Chairman for Local Arrangements and was
ably assisted by Grace Frazier and Strven Kimmel. We are pleased that
Colonel Thomas McGregor, Commanding Oi,.'cer of the Laboratories opened
the Conference and welcomed the participants. We look forward to meeting
at the Laboratorles again in the future.

It is traditional to have invited speakers give essentially expository
talks on topics of' current interest in statistics and probability. There
in also an attempt to provide talks that are somewhat consistent with the

i1 theme of the mission of the Army installation at which the annual Conference
is held. This confluence of purposes was achieved. The f'irst talk was
given by Professor J. Stuart Hunter of Princeton University on "The Measurement
Process." The crux of this talk was measurement when data is avail.able over
"time such as in air pollution studies =d the speaker presented two different
models by which this could be accomplished. Later in the first morning
Professor Benjamin S. Blanchard of Virginia Polytechnic Institute and
State University gave a talk on, "Management of Reliability." The
reliability theme pervades many Army installations and this is so at the
Harry Diamond Laboratories. On the afternoon of the second day there
were two sessions for invited speakers and each wat devoted to a very
current topic in statistics where each topic has a fast developing
literature, The first speaker was Dr. Carl N. Morris of the RIA Corpora-
tion who spoke on, "Stein's Estimator, Its Generalizations and Its
Applications." This was followed by Professor Robert THus of the
University of Iowa who spoke on, 'Robuzt Statistical Procedures." The
subject matter in both of these talks has wide raneing appli cations
in a number of diverse activities of the Army. On the morning of the
lut day of the meetings Professor Nozer D. Singpurwalla of the George
Washington University spoke on, "Accelerated Life Testing." This topic
has a long histozy in Defense Department prograns and is still a quite
active subject for statistical investigations.

The audience consisted of a largo number of participants from Army
installations, other government agencies, a.nd a numiber of investigators
from universities. A majoa' purpose of the conference is to bring
together those engaged in scientific work in Armay insLt.aLations with other
investigators. This interaction has been going on successiflly since the
inception of the progrwn and it continued at this Conference. Statisticians
and others in Army installations di,;cuss their work at techni'•al se.sions
and clinical sessions at; each Annuul Conferencc. For this Conference
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there were eight technical sessions comprising eighteen paperb and four
clinical sessions. At the clinical seszions a panel of experts
responds to problems raised by those in Army installations who have
usually given advance manuscript copies to the panelists. Besides the
technical aspects, these sessions provide a source for initiating future
collaboration between scientists in Army irmtal&ations and those in
university life.

On the evening of the first day of the Conference a banquet is held
at which the Samuel S. Wilke Memorial Award of the American Statistical
Association and the Department of the Army is presented. At this meeting
the twelfth award was presented to Dr. Solomon Kullback, Profesor Emeritus
of Statistics at the George Washington University. The award was made by
Dr. Joan Rosenblatt, Chairman of the Wilks Award Comnittee. Professor
Kullback was cited for substantive contributions to both the theory and
the application of statistics, including his work on mu.Itidimensional
contingency table analysis and cry-ptanalysis, and his outstanding contri-

-,, butions in the application of statistics in the service of the Nation.
jThe Azy Mathematics Steering Committee sponsors these meetings

on behalf of the Office of the Chief of Research and Development and
Acquisition to bring new developments in statistics to Army scientists
and engineers and to expose them to thinking that could be profitable
to them in the execution of their missions. The Committee has asked
that the Proceedings of the Conference be published and issued Army
wide and to other scientific communities.

At the beginning of each calander year the Program Committee for
the•e conferences is selected and meets in Washington, D.C. to suggest
areas of interest, to outline a program, and to suggest speakers for
the meeting to be held later that year. I would like to express my
appreciation to Dr. Frank Grubbs, Program Chairman for this year's
Committee and to Dr. Douglas Tang, Chairman of the Subcommittee on
Probability and Statistics, Army Mathematics Steering Committee, for
their efforts and great help. My thanks olso go to other committee
members involved in developing this year's program: Drs. Walter D.
Foster, Bernard Harris, Joseph M. Kirschner, 13adrig Kurkjian, Clifford
J. Maloney, Robert J. Launer, Douglas B. Tang. Dr. Francis G. Dremiel,
Program Committee Secretary, as alwcya was helpful in many ways in making
sure the program was a success. Thus, many helped in guiding this
"Conference to a successful conclusion and this is very much appreciated.

Herbert Solomon
Conference Chairman
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AGENDA

THE TWENTY-SECOND CONFERENCE ON THE DESIGN OF EXPERIMENTS IN

ARMY RESEARCH, DEVELOPMENT AND TESTING

20-22 October 1976

Harry Diamond Laboratories

***** Wednesday, 20 October *****

0$15-0916 Registration -- Lobby of the Administration Building: Building 205

0915-1215 GENERAL SESSION I -- Auditorium of the Administration Building

CALLING OF CONFERENCE TO ORDER

Mr. Joseph Kirshner, Chairman on Local Arrangements, Harry
Diamond Laboratories, Adelphi, Maryland

WELCOMING REMARKS
Colonel Thomas McGregor, Commanding Officer,
Harry Damomid Laboratories, Adelphi, Maryland

CHAIRMAN OF SESSION I

Dr. Frank E. Grubbs, Program Committee Chairman, Aberdeen
Proving Ground, Maryland

THE MEASUREMENT PROCESS

N, Professor J. Stuart Hunter, School of Engineering aind Applied
Science, Princeton University, Princeton, New Jersey

1030-1100 BREAK

1100-1215 GENERAL SESSION I (CONTINUED)

MANAGEMENT OF RELIABILITY

Professor Benjamin S. Blanchard, Jr., Engineering Extension
Division, Virginia Polytechnic Institute and State University,
Blacksburg, Virginia

1215-1315 LUNCH -- HDL Cafeteria
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I I ***** Wednesday *****

1315-1445 CLINICAL SESSION* A -- Auditorium of Building of 205

CHAIRMAN
•3 I Robert L. Launer, US Army Research Office, Research Triangle

Park, North Carolina

PANELISTS

Seymour Geisser, School of Statistics, University of Minnesota,
Minneapolis, Minnesota
Robert V. Hogg, The University of Iowa, Department of Statistics,
Iowa City, Iowa
J. Stuart Hunter, School of Engineering and Applied Science,
Princeton University, Princeton, New Jersey
Herbert Solomon, Department of Statistics, Stanford University,
Stanford, California
PROBLEMS IN TESTING PHARMACOKINETIC MODELS

LTC Carl C. Peck and L. A. Hopkins, Blood Research Division,
Department of Surgery, Letterman Army Institute of Research,
Presidio of San Francisco, California

DIETARY BRAN AND CELLULOSE: EFFECTS ON SERUM LIPIDS

Walter D. Foster, Charlotte M. Heggi, Daniel H. Conner, Armed
Forces Institute of Pathology, Frank A, Franklin, Jr., Walter
FReed Army Medical Center; Samuel M. Wylde, Ener-G-Foods, Inc.;
Joe M. Blumberg, Oscar S. Hunter Memorial Laboratory, Washington, DC

1315-1445 TECHNICAL SESSION 1 -- Room 2G016

CHAIRMAN

Langhorne P. Withers, US Army Operational Test and Evaluation
Agency, Falls Church, Virginia

ANALYSIS OF AN ERROR-TIME RESPONSE PERFORMANCE
Michael Hacskaylo, Night Vision Laboratory, USA Electronics
Comnuando Ft. delvoir, Virginia
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~t Wednesday

AN EXPERIMENTAL DESIGN TO DETERMINE THE FREQUENCY DISTRIBUTION
OF LASER RADAR (LADAR) RETURN SIGNAL VOLTAGES

Jay W. Vickers, Systems Evaluation, Aeroballistics Directorate,
USA Missile R&D Command$ Redstone Arsenal, Alabama

1440-1515 BREAK

14$-140 CLINICAL SESSION B -- Auditorium of Building 205

CHAIRMAN

.Joan R. Rosenblatt, Statistical Engineering Laboratory, National
Bureau of Standards, Washington, DC

PANELISTS

A. Clifford Cohen, Institute of Statistics, University of Georgia,
Athens. Georgia
FrankE. Grubbs, Aberdeen Proving Ground, Maryland

Bernard Harrt's, Mathematics Research Center, University of
Wisconsin, Madison, Wisconsin

Nozer D. Singpurwalla, Department of Operations Research, George
Washington University, Washington, OC

RELIABILITY ANALYSIS OF AIRFIELD LIGHTING SYSTEMS

Frank Kuo and Ed Lindow, Construction Engineering Research
Laboratory, Champaign, Illinois

SIMPLIFIED METHOD FOR DETERMINING APPROXIMATE LOWER CONFIDENCE
BOUNDS OF A SYSTEM WHOSE RELIABLITY FUNCTION IS DESCRIBED AS A
BETA

Louis M. lannuzzelli and R. Dostal, HQ, USA Armament Command,
Rock Island, Illinois

10 I1S,1645 TECHNICAL SESSION 2 -- Room 2GO16
CHAIRMAN

3•ertrude Weintraub, Picatinny Arsenal, Dover, New Jersey

EVALUATION OF GUNNER ERRORS THROUGH TIME SERIES ANALYSIS

Latricha Greene and John Howerton, Systems Evaluation,
Aeroballistics Directcrate, USA Missile R&D Command,
Redstone Arsenal, Alabama

ix



***** Wednesday ***

RANGE INSTRUMENTATION POSITION ACCURACY

F. L. Carter, Dugway Proving Ground, Dugway, Utah

1630 * SOCIAL HOUR AND BANQUET -- Hampshire Inn

PRESENTATION OF THE SAMUEL S. WILKS MEMORIAL AWARD

Dr. Frank E. Grubbs, Master of Ceremonies

'**** Thursday, 21 October *****

0B30-1010 CLINICAL SESSION C -- Auditorium of Building 205

CHAIRMAN
A. Clifford Cohen, Institute of Statistics, University of
Georgia, Athens, Georgia

PANELISTS

Robert Bechhofer, Department of Operations Research, Cornell
University, Ithaca, New York
Seymour Geisser, School of Statistics, University of Minnesota,
Minneapolis, Minnesota
Robert V. Hogg, The University of Iowa* Department of Statistics,
Iowa City, Iowa
J. Richard Moore, US Amy Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland

EXPERIMENTAL DESIGN FOR LABORATORY EVALUATION OF IMAGING
SYSTEMS
R. Flaherty, J. Palnier and F. Shields, Night Vision Laboratory,
USA Electronics Command, Ft. Belvoir, Virginia

A METHOD FOR DETERMINING PAIRWISE CONTRASTS FROM A FRIEDMAN
TWO-WAY LAYOUTBASED ON A THEOREM BY MARASCUILO

Jimmie C. Deloach and Eugene Dutoit, USA Infantry Center,
Ft. Benning, Georgia

0830-1010 TECHNICAL SESSION 3 -- Room 2G016

CHAIRMAN

J. Bart Wilburn, Jr., I&M Branch, US Amy Electronic Proving
Ground, Ft. Huachuca, Arizona
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H Statistics, Thursday *****

ESTIMATE OF RELIABLITY IN THE STRESS-STRENGTH MODEL

Asit P. Basu, University of Missouri-Columbia, Department
of Sttistics* Columbia, Missouri

UNDERLYING PROBABILITY DISTRIBUTION OF GUN TUBE FATIGUE LIFE

flnald L. Racicot, Watervliet Arsenal, Watervliet, New York

FAILURE PREDICTION OF FINITE FLAWED CERAMIC PLATES UNDER
COMBINED STRESSES

Al• Oonald M. Neal, Army Materiel and Mechanics Research Center,
Watertown, Massachusetts

1010-1040 BREAK

1040-12!5 CLINICAL SESSION D -- Auditorium of Building 205

CHAI RMAN

Clifford J. Maloney, Bureau of Biologics, FDA, Bethesda,
Maryland

PANELISTS

Robert Bechhofer, Department of Operations Research, Cornell
University, Ithaca, New York
.GEP. Box, Department of Statistics, University of Wisconsin,

Madison, Wisconsin. Representing the Mathematics Research Center.
Bernard Harris, Mathematics Research Center, University of
Wisconsin, Madison, Wisconsin
Herbert Solomon, Department of Statistics, Stanford University,
Stanford, California

ESTIMATION AND EFFECT OF NOISE CORRELATION ON VARIANCE
ESTIMATION FROM MOVING ARC SMOOTHING

Paul H. Thrasher, quality Assurance Office, White Sands
Missile Range, Now Mexico

1040-1215 TECHNICAL SESSION 4 -- Room 2G016

CHAIRMAN

Walter D. Foster, Armed Forces Institute of Pathology,
Washington, DC
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***** Thursday *****

ROBUST OUTLIER DETECTION IN TRAJECTORY DATA REDUCTION

Robert H. Turner and William S. Agee, Analysis and Computation
Division, National Range Operations Directorate, White Sands
Missile Range, New Mexico

ON THE UPWARD CONTINUATION OF FIRST DERIVATIVES OF THE
ANOMALOUS GRAVITY POTENTIAL UNDER CONSIDERATION OF A
SUITABLE DATA BASE

H. Daussus won Luetzow, USA Engineer Topographic Laboratories,
Ft. Belvoir, Virginia

COMPARISON OF ERROR RATES AND MISCLASSIFICATION PROBABILITIES
USING BINOMIAL AND BAYESIAN MODELS FOR PERSONNEL CLASSIFICATION

Frederick H. Steinheiser, Jr. and Kenneth I. Epstein, USA

Research Institute, Arlington, Virginia

SA 1216-1316 LUNCH -- HDL Cafeteria

1315-1416 TECHNICAL SESSION 5 -- Auditorium of Building 205

CHAIRMAN

Joseph S. Tyler, Jr., Chemical Research Laboratory,3top ysics •aboratory, US Army Edgewood Arsenal, Edgewood,
i• flMaryland .

•.,TABLE LOOK UP AND INTERPOLATION FOR A NORMAL RAND0O4 NUMBER :

GENERATOR

William L. Shepherd and John N. Hynes, Systems Management
Division, Instrumentation Directorate, White Sands Missile
Range, New Mexico

IEGENVECTORS ANALYSIS OF EMPIRICAL DATA VERSUS UTILIZATION OF
*TANDARD FUNCTIONS

Oskar M. Essenwanger, Physical Sciences Directorate, USA
Missile RD&E Laboratory, USA Missile Command, Redstone
Arsenal, Alibama

1315-1415 TECHNICAL SESSION 6 -- Room 2GO16

CHAIRMAN

Malcolm S. Taylor, US Army Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland
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***** Thursday *****

INDUCTION ON A MARKOV CHAIN

Richard N. Brugger, RAM Assessment Division, USA Armament
Command, Rock Island, Illinois

IARKOV DEPENDENT PROCESSES AND CONTINUOUS SAMPLING PLANS IN
TANDEM

David L. Arp, Naval Weapon! Center, China Lake, California

1415-1645 GENERAL SESSION II -- Auditorium of Building 205

CHAIRMAN

Dr. Douglas B. Tang, Department of Biostatistics/Applied
Mathematics, Division of Biometrics and Medical Information
Processing, Walter Reed Army Institute of Research,
Washington, DC

STEIN'S ESTIMATOR, ITS GENERALIZATIONS, AND ITS APPLICATIONS

Dr. Carl N. Morris, Rand Corporation, Santa Monica, California

K 151S-1545 BREAK

1545-1645 GENERAL SESSION I! (CONTINUED)

ON ROBUST STATISTICAL PROCEDURES

Professor Robert V. Hogg, The University of Iowa, Department
of Statistics, Iowa City, Iowa

***** Friday, 22 October 1976 *

0830-1015 TECHNICAL SESSION 7 -- Room 2G016

CHAIRMAN

Gerald Andersen, Battlefield System Integration Directorate,
Alexandria, Virginia

ESTIMATING RELIABILITY FROM SMALL SAMPLES

Donald W. Rankin, Army Materiel Test and Evaluation Directorate,
White Sands Missile Range, New Mexico
(Jerry Short will present the paper)
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***** Friday ,w*'**

ESTIMATION AND PREDICTION OF CONFIDENCED RELIABLE LIFE FROM
SMALL SAMPLE SIZES

Eugene E. Coppola, Benet Weapons Laboratory, Watervliet Arsenal,
Watervliet, New York

SEQUENTIAL ALLOCATION OF OBSERVATIONS IN THE EXPONENTIAL
SELECTION PROBLEM

Robert M. Wharton and R. Srinlvasan, Thomas Jefferson
University and Temple University (respectively), Philadelphia,
Pennsylwvnia

0830-1016 TECHNICAL SESSION 8 -- Auditorium of Building 205

CHAIRMAN

BrAce J. McDonald, Probability & Statistics Program, Office of
Naval Research, Arlington, Virginia

MAXIMUM LIKELIHOOD ESTIMATION OF 12D FOR INOCULATED PACKS

Edward W. Ross, Jr., USA Natick R&D Command, Natick, Massachusetts

CONFIDENCE BOUNDS FOR THE GENERAL LINEAR MODEL

Malcolm S. Taylor and J. Richard Moore, USA Ballistic Research
Laboratories, Aberdeen Proving Ground, Maryland

COST OF LIVING INDEX

K. S. Banerjee, Statistics and Computer Science Division,
University of Delaware, Newark, Delaware

1015-1045 BREAK

1045-1215 GENERAL SESSION III -- Auditorium of Building 205

CHAIRMAN

Professor Herbert Solomon, Chairman of the Conference, Department
of Statistics, Stanford University, Stanford, California

OPEN MEETING OF THE AMSC SUBCOMMITTEE ON PROBABILITY AND STATISTICS

Dr. Douglas B. Tang, Department of Blostatistics and Applied
Mathematics Division, Blometrics and Medical Information Processing,
Walter Reed Army Institute of Research, Washington, DC

ACCELERATED LIFE TESTING
Professor Nozer D. Singpurwalla, Department of Operations Research,
George Washington University, Washington, DC

1215-1315 LUNCH xtv



MANAGE•MN OF

RELIABILI17Y AVAILABILITYl N M&INTAINAJILITY OW)

Benjamin S. Blanchard
College of Engineering

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABMC. Our systems and equipment in the field have become MOre and more
compflire not operationally available a good percent of the time; require
extensive maintenance and support; and are quite costly. One of the causes for
this dilenma is the emphasis that has been placed on performance and advanced
technology, while at the same time very little consideration has been given to
reliability, availability, and maintainability (RAM). More recently, a concertedA effort has been initiated to recognize RAM as necessary parameters of system/
equipment design and development. Military specifications and standards have
been generated and RAM requirements (to varying degrees) have been formally
applied on many programs. Although this effort has forced the recognition of
RAM to a considerable extent, many program implementation problems currently
exist and our systems/equipment in the field are still experiencing significant•,, difficulties.

In this paper the author has attempted to identify some of the problems
associated with current RAM implementation practices, and to recommend some
courses of action for improvement in the future. A significant challenge lies
ahead if we intend to derive some of the benefits from RAM.

L-- INTRODUCTION. Through the past few decades emphasis in the design and
development of now systems and equipment has been placed primarily on performance
factors, delivery schedules, and initial acquisition price. The pressures associ-
ated with Lncreased performance has resulted in a dilemma where many items current-
ly in government inventories are highly complex, inoperative a good percentage
of the time, difficult to maintain, and in general too costly to justify. In other
words, we have produced a large quantity of systems and equipment with low reli-
ability and poor maintainability characteristics, and the level of support neces-
sary to sustain them operationally is considerable! This in turn has:

a. Threatened the overall availability and operational effectiveness of
systems and equipment in the field and hence, the defense of our country
bither directly or indirectly).

b. Caused high maintenance work loads and increased logistics support
resource requirements.

c. Increased life cycle costs for systems/equipment acquisition and
utilization, particularly those costsassociatedwith system operation
and support troughout the life cycle.

% t J ...



The current trends of rising system costs plus inflation, combined with some
budgetary shifts from defense to other public sectors, are causing serious
concerns relative to our future defense capability.

More recently, an attempt has been initiated to counter these trends
through the recognition of some critical "cause and effect" relationships
involving reliability, availability, maintainability, performance, logistics
svmport, life cycle cost, etc. Experience has indicated that highly reliable& •rd maintainable systems/equipment are a means for improving operational
effectiveness while holding the line on life cycle costs. Reliability and
maintainability are indeed characteristics which are inherent in system/i
equipment design, and the extent to which they are considered has a signifi
cant impact on logistics support requirements and life cycle cost. Further,

Al •,the consideration of reliability and maintainability in the design process
must commence at the conceptual phase of system development and extend through
detailed full-scale engineering development, test and evalhmtion, and pro-
duction. In essence, it has been recognized by many that the conditions

4 noted below should be stressed in the future:

a. Reliability, availability, and maintainability should be considered
in the system design and development process on an equivalent basis
with performance and other related factors.

b. Logistics support should be considered in the design process and
should be closely integrated with reliability, availability, main-
tainability, and performance considerations.

c. Life cycle cost should be considered as a design parameter (i.e.,
design to unit acquisition cost, design to unit operation and
support cost, design to unit life cycle cost).

A primary objective is to provide the necessary managemnt e his in all
future system/equipment acquisitions, or modifications tor improvement, to
ensure that these considerations are addressed at the proper level.

With this objective in mind, it is now appropriate to review current
practices, assess the pros and cons of such, and determine the steps neces-
sary to further improve our systems and equipment. The author attempts to
accomplish this in the paragraphs below, with the discussion basically
focusing on the management of Reliability, Availability, and Maintainability
(RAM).

21 ýý NT PRACrJCES. Although reliability, availability, and
maintainability are recognized in many program today, the implementation
practices associated with these areas still require some iprovement, A few
characteristic problems as they currently exist in on-soeng provrawm are
outlined below (not necessarily presented in any specific order).

a. Specification of System Technical Requirements

(1) In many instances, quantitative factors are included in requests
for proposals (RFPs) and in contracts as "goals". Consequently,

2



these factors are indeed treated as goals and not as requirements,
* and are considered only lightly (if at-al1) in program implementation.

(2) Quantitative factors are not always specified in m terms.
Often, probabilistic values that can not be realisticli emonstrated
are specified instead of quantitative factors that can be understood,
allocated, and verified. For instance, it is questionable that one
can adequately verify a 0.9995 reliability requirement when limited
quantities of equipment are procured and the test sample is small.
"Also, it is hard to explain a "0.9995 factor" to a design engineer

¶! in a meaningful manner, where a MTBF or MTEM value would be more
appropriate. In essence, the mathematical "Jargon" sometimes employed
is difficult to relate directly to design and is often misunderstood
by engineers and management personnel alike.

(3) The application of technical requirements is not always related to
specific mission objectives. As a result, it is difficult to deter-
mine whether the requirements are too stringent or too loose relative
to the ultimate mission need. In many cases mission requirements are
not adequately defined early enough in the program, and one can not
properly design equipment without a mission profile or scenario of
some type; thus, RAM requirements result from a "best.guess" approach
which is less than satisfactory.

b. RAM as Design Parameters

Reliability, availability, and maintainability are not recognized as
design parameters. Past practices have promoted the concept of "design
thie system quickly, put it into a test program, and fix it if necessary",
RAM have not been truly coupled into the design effort, but designated
for measurement or demonstration at the conclusion of full-scale engineer-
ing development. This concept has been quite costly, particularly when
extensive system/equipment modifications are necessary to meet RAM require-
ments at this late stage of engineering development.

C. Application of Specifications and Standards

(1) On a number of occasions the "panic" to release specifications for
a procurement results in a fragmented document incorporating con-
flicts and contradictions. RAM is not properly n rated into the
overall product. The specification is without doubt--ne-of the most
important aspects of a program, but is not always given the neces-
sary level of attention because of the tight schedule requirement
to publish something for immediate dissemination purposes, The
consequences frequently result in problems occurring throughout the
remainder of the program.

IZ) Military specifications and standards Ce.g,, MIL-STDs-470,-.471,.-781,
-785) are often arbitrarily applied to a contract in terms of "blanket
coverage" without the tailoring of such to the specific program need.
This can result in the application of meaningless requirements, un-
timely activities and information, too much data of little value,

3



and high consequential program costs. Specifications and standards
should address real time task enforcement, product measurement and
control, with less overall dependence on test and demonstration at
the end of full-scale engineering development.

d. Structuring of Test Programs

CI) System/equipment testing is accomplished to different environmental
profiles than what is actually experienced in the field, Hence, the
test results are not necessarily a Verification that the intended
requirements have (or have not) been mot. This relates to the
initial inadequate definition of mission profiles or scenarios as
discussed in Paragraph 2a(3) above.

"(2) Many test and demonstration programs are accomplished at the end
of full-scale engineering development after the commitment of
production/operation funds. Testing at this stage can only measure
the worth of a design configuration at a point when it is too costly
and time consuming to make major changes to correct a problem for
RAM.

"e. Producer Accountability

Producer accountability is generally lacking! If the system/equipment fails -

in test and demonstration, the policy in some cases has been to discount the
failures or to change the standards such that the system will pass. How
often is the system/equipment actually rejected by the customer because of
failure to pass RAM tests? In such cases, is the producer actually required
to initiate the necessary corrective action at his own expense? Perhaps
there are some cases where the producer is actually held accountable for his
design for RAM; however, in numerous other instances the system/equipment
is accepted regardless of the outcome of RAM verification testing,

The problems outlined above are representative of areas where current
implementation practices concerning RAM need improvement. In all cases the type
of problems indicated have been recognized, and some action is being taken (to
varying degrees) in an attempt to improve future system/equipment acquisitions
from the RAM standpoint. However, inspite of what is currently underway relative
to RAM activIties, a great deal of additional effort is required if the objectives
of RAM in system/equipment design and development are to be truly realized.

3, CHALLENGES FOR THE FUTJUR. At this point the major question is--Are We
Serious About Reliability, A l, And Maintainability? The author MIrni-r
be~ie e- we are! owever every effor must Ee mal-to preclude or alleviate
some of the problem areas mentioned above. It is felt that no new policies per
se are necessary, but that a new approach to policy implementation is definitelyrequired. Some key implementation factors and challenges for the future are noted.

a. More front end planning, programming, and budgeting is required relative to
the inclusion of RAM factors, In other words, RAM considerations must be
addressed in Decision Coordinating Papers CDCPs), Operational Capability
Objective (OCOs), Letters Of Agreement CLOAs), Outline Development Plans
(WDPs), Required Operational Capability (ROC) documentation, and so on.

4
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Referring to Figure 1, which illustrates the classical program phases, RAM
should be initially covered in the wrnceptual phase of system design and
development, The intent is not to be overly stringent relative to the
specification of RAM requirements at this stage, but to properly address
the major issues pertaining to RAM, In addition, program budgets must$' reflect RAM decisions--i,e., increase the procurement dollars slightly to i

acquire the necessary RAM and reduce the support dollars to reflect the
corresponding reduction in system support cost.

b. RAM must be treated more as a "discipline" throughout the system/equipment
life cycle and in particular, the early design process.

Figure 2 illustrates the system life cycle process and addresses typical
RAM activities in each phase of the process. Not only are RAM activities
applicable in each major evolutionary stage of system development, but
these activities must be closely interrelated throughout! Of particular
significance are the decisions pertaining to RAM which are a part of the
're uirements depicted in BlocRs 2 through 8 of Figure 2. Uxperience hasindicated that ultimate system life cycle cost is significantly influenced
by design decisions made during the conceptual and validation phases of a
program. The overall impact of actions affecting life cycle cost is re-' Elected by the "trend" curve in Figure 3, Further, experience has verified

that life cycle cost is highly influenced by RAM, particularly those costs
associated with system operation and support. Lhus, RAM must be addressed
early in the system life cycle if the end product is to be cost effective.

co Program management for RAM mist be significantly strengthened! More
L specifically:

(1) Realistic and meaningful requirements must be clearly specified
early in the system life cycle.

c ) Specifications must be improved and more precisely "tailored" to
meet the actual needs. User involvement in the initial preparation
of specifications is recommended,

(2) Requests for proposals W.Ps) must leave no doubt that RAM and per-
formance are 'equals" in priority and importance.

(4) Program managers must be held technically accotntable for RAM as
well as for other factors.

(5) Program "checks and balances" must be provided for managementcontrol (and audit for compliance) relative to RAM requirements.
Formal pro ram reviews and technical design reviews must address
major RAM issues.

"(6) Tntegrated test planning is required. As the purpose of testing J
is to ensure that the system/equipment design meets all stated
requirements (including RAM), it is essential that such testing be
accomplished in the proper envirodnent. If the test conditions
duplicate or exceed the ultimate field environment, the test results

5
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HL
will be effective in ensuring that RAM requirements will bc met after
system/equipment deployment. If not, testing will be ineffective.

Additionally, a number of different tests may be accomplished at
different stages in the life cycle. All individual tests must be
addressed on an itegrated basis to ensure that the desired information
is provided at tre'rigt timei n the system life q/cle. Too much
testing too early is costly; accomplishing tests too late in the
program could be costly; and redundancies in testing my also be coitly.

(7) More producer involvement after the system is in operation is desir-
able. In many instances, the producer should be held responsible for
correcting maJor field deficiencies.

(8) There should be more innovative approaches to better contractinf
for RAM. One should consider the appropriate use of: penalty/Lcantive
provisions; penalty clauses to cover poor workmanship and design prac-
tiCes; warranties at the piece part level; and meaningful progress pay-
ment schedules, The application of the appropriate contractual provi-
sions for RAM requirements should create the desired emphasis relative
to RAM.

d. (9) Strict and timely enforcement of RAM program requirements is essential.

d. Managers and organizations must be educated relative to the benefits derived
through the proper level and application of RAM. This is perhaps the great-
est challenge, since it is felt that many of the problems experienced in the
past could have been avoided had the benefits of RAM been adequately under-
stood and accepted. In addition, with the proper education and understand-
ing, many of the desired objectives mentioned above should be readily attain-
able.

g. " N... The past few decades have led to many advances toward
focusin-gatei on on reliability, availability, and naintainability (RAM). The
"next decade is significant in term of actual realization of the benefits derived
through RAM. The proper levels and applications of RAM are indeed necessary to
improve overall system/cost effectiveness at reduced life cycle cost. Address-
in& the issues outlined in Paragraph 3 is believed to be a ste pin the right
direction and constitutes a major challenge for the future, With educational know.
how, persistence, and dedicated effort, it is believed that this challenge can
be met.

10
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PROBLEMS IN ANALYZING PHARMACOKINETIC DATA

Carl Peck and
Alan Hopkins

Departments of Surgery and Information Sciences
Letterman Army Institute of Research
Presidio of San Francisco, California

ALi T."J. Analysing drug disposition data using pharmacokinetic
modeling techniques is a commonly used approach to reducing such data
to therapeutically useful facts. However, certain conceptual and
statistical problems arise as a result of the data analyst's choice
of (1) objectives of the analysils, (2) the class of models to fit the
data, (3) the data fitting procedure, (4) the technique(s) for
assessing goodness of fit, and (5) ultimately, the most acceptable
model. These problems are introduced here along with some current
techniques for overcoming them, The advice of the panelists is
presented along with our consideration of their recommendations.

1. INTUODUCTION. Dosing decisions in medical therapeutics often
involve deciding how much, bow fequently, and how lona to administer
a given drug to a particular patient. Such decisions are rendered
much less arbitrary if the therapist ham some notion of the time
course of drug distribution and elimination from the body, as well as
a knowledge of the relationship of these quantitative features of drug
disposition to pharmacologic effects, Surprising as it may seem,
exacting knowledge of this sort is known for only a small proportion
of substances currently used in medical therapeutics. In the main,
dosing regimens have been developed on an empirical basis by a trial
end error process. J

A .Note. The presentation of this paper at the Conference included
examp-es of problems encountered in analysis of pharmacokinetic data
in our laboratory. In order to provide space for comments by the
panelists (paraphrased by us) and subsequent discussions, numerical
examples are omitted. The interested reader is referred to the
paper of Boxenbaum at al.l for examples of pharmacokinetic data
which typify the issues addressed in this paper.

S U,



In recent years a general approach to gathering and organizing
drug disposition information has been developed and is frequently
referred to as "pharmacokinetics," Pharmoacokinetioa has been defined
by Gibaldi and Parrier as "the study of the time course of drug and
metabolite levels in different fluids, tissues, and excreta of the
body, and the mathematical relationships required to develop models
to interpret such data." 2

For the purpose of making quantitative therapeutic decisions,
"a pharmacokinetic analysis of drug data can contribute in several
ways, Virst of all, a model which accurately describes the time
course of the drug in the body as well as in particular pools
can be quite helpful in choosing dosing size and doming frequency,

44* This presumes, of course, that the therapist ham some notion of
desirable upper and lower bounds for drug amounts in the body or pool
of interest, The behavior of linear systems under single and multiple
dose administration as well as oral ingestion and intravenous infusion

4i is well worked out. 2 , 3 Certain "derived" paramaters, such as
"apparent distribution volume," "body clearance," "terminal elimination
half-time," and "extent of bioavailability" can be operationally

~' ,¶ useful in making dosing decisions, Knowledge of the influence of I.

pathologic states on theme derived parameters can result in optimal
dosing regimens in the face of disease-induced alterations in
distribution and elimination.

Secondly, insights into drug-body interactions can be obtained
from pharmacokinetic analyses. For example, a mathematically zero-
order elimination process implies "saturation" of an elimination
mechanism, perhaps a hepatic enzyme-system. Observation that the
renal clearance and body clearances of a drug are identical suggests
that the kidney is the major elimination organ. A renal clearance
which is numerically in excess of glomerular filtration rate implies
tubular secretion i glomerular filtration as mechaniems of renal drug
processing. Insights of this nature contribute to therapeutic
decision-making by alerting the therapist to special precautions he
must take in designing a therapeutic regimen for multiple dosing in a
patient with a diseased liver or kidney.

In this paper we wish to summarize some current approaches to
analyzing pharmacokinatic data by identifying some problem areas and
presenting the responses of panelists to them.

"12



2. PHARMACOKINETIC MODELS: MATHEMATICAL DESCRIPTIONS OF DRUG
DISPOSITION. Conceptually, the pharmacokinetic model is usually
viewed as a system of inter-connected pools or compartments (Figure 1).
The arrows between pools represent drug transfer directions and the
symbols "K'j" are interpratad as transfer rates. The drug is

considered to be introdIAced into one of the compartments and body
fluid samples are taken from one or more of the pools. Mathematically,
the model may be defined as a system of differential equations.
Linear differential equations (first order) have been the most fully
explored and frequently applied drug disposition models. 3 Although
many drugs undergo apparent first order distribution and elimination
processes, this is not always the case. Apparent zero order or
combinations of zero and first order processes do occur in drug
kinetics, which render models of the Michaelis-Menton type
applicable. 4 However, for the purposes of this discussion we will
confine our attention primarily to the class of linear models.

Integrated solutions to systems of linear differential
equations assume a certain simplicity end order. An n-compartment
open model (with bidirectional irug transfer between all adjacent
pools) yields a linear combination of n-exponentials:

Dj Aiea i Equation 1

itilod owhere D - drug amount or concentration in the j- pool;

Sn - number of compartments; Ai, Ai - arbitrary parameters of the

model which are various algebraic combinations of the original"1micro"-rate constants (K ij ), volume scalars, and initial conditions.

S~~3. MATHOD8 OF PRlARMVCOKINETIC DATA ANALYSIS. Development of a

pharmacokinatic analysis usually precedes as follows: (1) serial drug
Sconcentrations are measured in a body fluid following a dose
administration, (2) some procedure in used to choose a class of
probable models which are appropriate for the purpose of the analysis,
(3) the data are fitted to the models by some procedure resulting in

P
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model parameter estimates, (4) an assessment is made of the goodness
of fit of the model to the data, and (5) a "most acceptable" model
Is chosen. The remainder of the discussion is to focus on some prob-
lems encountered in steps (2), (3), (4), and (5).

V .1 Step 2. Svecifving the Class of Probable Models. Choosing the

class of models to be considered usually involves a preliminary
study of the concentration/time-course data. If a cartesian plot
reveals a pradominatly linear decay profile, then a zero order
model or Michaelis-Menton model is usually considered. Curvilinear
decay curves are rendered segmentally linear on log-concentration/
time plots if the data behaves as a poly-exponential. The number of

I,. straight-line segments can be used as the initial number of
exponential terms to be included in the model. In addition, theF slo on d y-intercepts of these aegments can be used as starting
poinL, .... Iterative parameter estimation procedures. Although most
pharmacokin, icists procede in this fashion using manual or partially
automated graphical procedures, attempts have been made to fully
automate this phase of the analysis.5,6

SA decision must be made regarding the exact form of the mathe-
matical model to use in the data fitting phase. While data may be
fitted directly to systems of differential equations#,7 8 the usual
practice is to use the integrated form of the model. In the case of
linear pharmacokinetic models, this reduces to fitting data to a form
of Equation 1. The analyst must also decide whether to parameterize
the equation explicitly in the "micro"-rate constants (Kiu) or use

the "macro"-rate constants (Ai, Yi). This last issue was addressed

by one of the panelists (G.B.) and in discussed below.

Steo 3. Fittina the Model to Data. Fitting the model equations
to pharmacokinetic data is usually done using an automated least-
squares (LS) program such as SAAM/ or NONLIN.8 With two exceptions,
currently employed pharmacokinetic models are nonlinear with respect
to their pmrameters in their integrated forms and therefore require
nonlinear LS data fitting procedures for estimating parameter
values. The two exceptions are one-compartment open models with
(a) purely zero order elimination or (b) first order elimination
(which can be linearized by a log transformation of the eutire

model). Among problems encountered in this stage of the analysis

15
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are (1) appropriateness of the LS criterion for minimization,
especially as regards deviations of the system under study from
assumptions inherent in the LS approach and the large influence
that aberrant data values can have on the parameter estimates,
and, (2) whether and how to "weight" data for the analysis. These
two problems constitute part of the requirement for assessing

W'd adequacy of the model (addressed by panel.ist R.H.)

StsR 4. Assashing Goodness of Pit. An evaluation of the goodness
of fit of the model equation(s) to the data in a highly desirable

_V procedure in pharmacokinetics. The exact form that this assessment
takes will depend upon the overall objective of the pharmacokinetic
analysis, models used, and the fitting procedure employed. For
example, the analyst may be primarily interested in developing a
descriptive equation employing 'macro"-tate constants to use in
computation of "derived" parameters, or his principal intent may be
to estimate "macro"-rate constants of a specific compartmental model;
these divergent objectives will determine the criteria as well as the
technique employed in judging goodness of fit. If a LS data fitting
procedure has been employed, use of residual plots and analysis of
residuals for their distributional properties is appropriate.1.9 ,10  N
We have employed theme techniques to evaluate some of our pharmaco-
kinetic data analyses and found them to be particularly useful. Plots
of weighted standardized residuals against drug concentrations
reveal patterns which at a glance allow assessment of adequacy of'a weighting (stabilizing the variance about tho regression line),
model specificity (search for systematic deviations of residuals from

4 the regre..uion line) and randomness of reuidwdl distribution. Further
analysis of residuals alone for distributional properties (a.g. mean,
median, variance, skewness, kurtosis, specific tests of normality) has
been enliahtening but not always useful.. As pointed out by panelist
Dr. R. Hogg, the use of normality tasts may constitute too severe a
crite ion for use in an area where the validity of normal assumptions
are in serious question from the outset. In thisa regard, it was
suggested by one of the panelists that the Shapiro-Wi k1~ test for
normality might be reasonable.

Step 5. Choosing the Most Acceptable Model. Ultimately, all data
analyses must be terminated. This phase in pharmacokinatic data
analysis can be a troublesome problem when no clear-cut model emerges
more convincingly acceptable than others in the class of models

t 16



explored, or when attempts at weighting leave the analyst puzzled
about adequacy of various weighting schemes. tnalysis "termination
criteria" do emerge, however, when the overall objective of
the analysis in integrated with the other phases as is developed
in the discussion below. It should be noted also that a satisfactory
termination of data analysis is closely tied to the adequacy of the
overall design of the pharmacokinatic experiment. Optimally, the
experimentalist and the data analyst should communicate in the
experimental design stage so that sampling times, number of replicates,
etc. are designed to "optimize" the information gain from the effort.
This translates into a pro-experimental consideration of model, to be
used in analysis of the data and design of the experimental details so
that statistical estimates of model parameters are at minimum
variance within the practical constraints of experimental technology
and costs.

5. -COMMENTI 0f PAE MBERS AN~D DISCMS§ION.

Dr. G. E. P. Boxi A central issue which is inherently important
"in each problem area cited above is the overall objective of the
exorcise. Clear recognition of the goal(s) of a particular pharmaco-
kinetic experiment leads to clarity in the subsequent data analysis.

Discussioni On the surface, these remarks seem almost
unnecessary, for the thoughtful data analyst should always have a
clear idea of the goals of the exercise. However, Dr. Box correctly
detected some vagueness in the objectives of analyzing pharmacokinetic
data relevant to the ultimate use of the results. We accept Dr. Box's
perspicacious comments and wish to cite some developments in recent
pharmatokinstic literature which contribute to clarifying the
objectives of pharmacokinetic analyses. While postulating a class of
pharmacokinetic models in terms of compartmental schematics with
specific inter-compartmental connections is intellectually attractive,• the effort required to test, evaluate, and find an acceptable one may

be far in excess of that necessary to fulfill the clinical goals of
the experiment. If knowledge relevant to making dosing decisions is
the principal purpose, then a data analytic approach which
concentrates on estimation of macro-parameter models may be adequate.
Wagner has recently published a series of articles which argue
these points forcefully and which propose simplified data analytic
techniques for computing useful pharmacokinetic parameters.12' 1 3 ,14

17
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StoIf the analyst perceives that the objectiva of the analysis

is to provide tools for prediction and for computing "derived"
pharmacokinetic parameters, and = to test specific compartmental
models which were derived from differential equations, then he is
not restricted to exclusive use of the class of poly-exponentials.
For example, Wold at al, 1 5 propose the use of cubic spline procedures[ for computing area under the curve and terminal drug decay half-time,
and give a specific pharmacokinetic example to illustrate the method.

.R.Y.Hoist LS data fitting is not the only available option
and "robust" statistical procedures should be considered. (In his
formal presentation1 6 "On Robust Statistical Procedures," Dr.Hogg
outlined several possible alternatives to the LS approach to parameter
estimation,]

Discussion: Use of robust statistical procedures indeed offers a
potential contribution to analysis of pharmacokinetic data. Although
these approaches pose computational difficulties, they are attractive
both from the point of view of (a) relaxation of the more restrictive
normal assumptions inherent in LS procedures and (b) minimization of

the effects of "erratic" data (outliers). We have not yet applied any
of these approaches to our own problems, although we are aware of one
group which has. Frome and Yakatal7 used both LS and least-absolute-
deviation criteria in obtaining parameter estimates from the fit of a
one-compartment open first order model to a set of pharmacokinetic
data.

Dr. Ss. Gaisseri Consideration should be given to the use of the
Cp statis~tcla and predictive sample reuse methods 1 9 - 2 1 for assessing
goodness of fit and for developing data analysis termination strategies,

Discussioni The Cp statistic was originally derived for use
in making decisions about the number of terms to include in
linear models where normal assumptions hold. Therefore, use of
this approach for deciding among several poly-expnnential models
must be viewed as an .ad hoc procedure, the theoretical basis for
which remains unexplored. Nevertheless, the technique is appealing.
Given that the "total squared error" computed from a nonlinear
regression bears some inexact but semiquantitative relationship to
the "true" squared biases and squared random errors, then plotting
Cp versus p for various pharmacokinstic modelst may yield some

t here p might be considered the number of parameters of the model.

, s, Ii
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basis for choice.

Use of predictive sample reuse methodology for assessment
** of different predictive functions is apparently a rather r~cent

development in statistics. The available papers on predictive
K sample reuse are not easy for the non-statistician to understand,

therefore, a brief description of technique in the present context
will be given. Like the Cp statistic, a number associated
with a given fit of a specific model to data is desired which will
allow discrimination between models such that a most reliably
predictive model may be identified. This number, call it rp, may

be computed using the following "data reuse" approach. Model j
is fit to all the data less the first datum by LS and the residual
sum of squares is recorded (RSSI). The procedure is repeated
after replacing the first datum and omitting the second data
point and the resulting RSSa is added to the first. This is repeated
by replacing the ift data point and removing the (i+l)th datum

and so forth until r RSSi. The entire procedure is

P
replicated for each proposed model. Then all r pmay be compared
and model p*, beyond which rp does not &et appreciably smaller, may

be chosen as an acceptable model. We have no experience with this
technique but it may be a useful data analysis termination strategy.

FINAL COMMENT. While following up on recommendations of the
panel, we ran across two treatises generally covering the areas of
goodness-of-fit and data analysis termination strategies which we
feel are important to pass on to the reader, They are Daniel and
Wood's book (see ref. 18) and a recent paper by Hocking. 2 2 Theme
sources contain discussions of other techniques which may be applica-
ble to the problems addressed in this paper.

.g~ii We wish to express our sincere appreciation
to the members panel for their thoughtful consideration of
our problems in analysing pharmacokinetic date and for their thought-
provoking comments, Any errors in paraphrasing the panelists'
comments or misinterpretation of their advice remain the responsibility
of the authors. In addition, assistance in preparing this manuscript
of Dr. Lewis Sheiner of the University of California, San Francisco
is gratefully acknowledged.
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EFFECTS OF DIETARY BRAN AND CELLULOSE ON SERUM LIPIDS

Charlotte M. Heggle (1); Daniel H. Connor (1);
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Samuel M. Wylde (3), Joe M. Blumberg, (4).
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20006

ABSTRACT. Unprocessed bran (bran) and carboxy-methyl cellulose
CMq) were added to regular diets of overweight and normal weight volunteers

to determine the effect on serum lipids. Downward mean trends of cholesterol
and triglyceride levels were found in all groups taking bran and CMC after
twelve weeks except the overweight men ingesting CMC. Downward mean trends
for cholesterol ranged from 0.74 mg/l00 to 1.65 mg/lOO per week and for the
triglycerlde from 0.36 mg/lO0 to 4.78 mg/lOO per week.

1. INTRODUCTION. Corgn; atherosclerosis is the leading cause of
death in the United Itates. In spite of this atherosclerosis was rare
In this country before 1900,3 and remains almost unknown In some developingcountries.

Dietary factors are under constant scrutiny, and a number of research
have proposed that lack of dietary fiber may be an important causal factor, '

diets of rural people in developing countries
where atherosclerosis is rare and has decreased in the diets of westernersduring the rise of fetal atherosclerosis.

Dietary fiber could lower serum lipids in various ways. It is hygroscopic
and might absorb emulsified lipids taken with the diet. Dietary fiber would
also absorb cholesterol secreted in the bile and thus reduce its reabsorption
in the small intestine. Increased dietary fiber also reduces gastro-
intestinal transit time and thismight also reduce absorptions of lipids.

In an Attempt to determine whether dietary fiber reduces serum lipids,
we performed the following study.

2. METHODS. Forty-four healthy men ages ranging from 23 to 65 years,
volunteere-dsfor-a 12-week study. All were on duty at the Armed Forces
Institute of Pathology when the study began. Most were pathologists, and
the remainder were trained In one of the medcal s ecwa ties. All under-
stood the purpose of the study and were "dedicated" volunteers. They
continued their regular diets, did not alter their life styles, and
m.aintained body weight.

anfu
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The men were divided by height/welght ratio and age into three A
. equivalent groups--control, bran and cellulose. Each member of the bran

group added 86 gm of unprocessed bran to his daily diet--28 gm (I ounce)
with breakfast and 28 gm with his evening meal--a daily supplement of
about 6 gm of nonnutritive fiber. Each member of the cellulose group
added 6 gm of cellulose* to his daily diet.-3 gm at breakfast and 3 gmi
with the evening meal. This Is all nondigestable, so both groups ingested
approximately 6 grams of nonnutritive hygroscopic substance, These
supplements were ingested for 12 weeks,

Fasting blood samples were collected at intervals of two weeks; serum
cholesterol determinations were done every two weeks; and serum triglyceride
determinations, every four weeks. (The control group, however, had no
triglyceride determinations on the fourth week,)

During the course of the study, 9 of the 44 men dropped out-- 4 were
transferred, 4 could not tolerate the unprocessed bran, and 1 man
substituted sweetened bran ("All Bran") for unprocessed bran. Of the remain-
Ing 35, 18 had a "normal" weight and 17 were overweight. Linear regression
to estimate the trend of each man's serum lipids was calculated and the
trends were averaged for each group. Because only slopes were averaged, the
variation introduced by differences in lipid levels from subject to subject
was removed--a valid approach since each subject acted as his own control
in the trend analysis. A refinement of the analysis involved the recompu- I
tation of the average trends per group with each subject's degree of
consistency of trend used as a weight in obtaining a weighted-average trend
(where degree of consistency was measured as the reciprocal of the variance
of the slope). The weighted-average, while conferring greater importance oto consistent trends, also served to be selective, gtvtng some subects

considerable prominence. Therefore, special care was taken in the
interpretation of the weighted averages to ensure that they were also
representative of the group.

The probabilities were obtained from Student's t-test on the average
trends (weighted and unweighted) for each roup under the nullhypothesis of
zero trend against the one-sided, alternative hypothesis of negative slope.

3. RESULTS. The triglyceride levels were sharply lowered in the
normal-werght subjects eating bran and cellulose. The group of overweight
subjects eating bran and cellulose and the control group did not show this
str king trend. See Fig. 1. In addition mean cholesterol levels fell in
the roup of overweight men taking bran. The graphs in Fig. 1 are means of
the Tndividual trends so that the variation in lipid levels from subject to
subject was removed,

*Purchased is sodium carboxy-methyl-cellulose tablets, 0.5 gm, from I
Interstate Drug Exchange Mfg. Co., Plainview, Long Island, New York 11803
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Using a preliminary cutoff at P • .10, four of the seven nogative
slopes in the bran and cellulose groufs were statistically significant.
See Table I. Expressed as a percentage of the initial levels, the
reduction war 75% for the group taking CMC and 60% for the group taking
bran, Three of the mean trends that failed the statistical cutoff were
groups of overweight men. Because of the greater variability ot serum
lipid trends among the overweight men, a refined analysis was performed
consisting of computing weighted-average trends using as weights the
degree of consistency of each Individual's trend. The weighted trends
generally show a numerically steeper rate of reduction of serum lipids
together with enhanced statistical probabilities. Thus, six of the eight
trends for the bran and cellulose groups were statistically significant
(P .05) downward trends. The only non-downward trend was the overweight
men -ingesting CMC whose serum cholesterol unaccountably increased, This
contrasts with the decreased triglyceride level for this same group.

Since each subject served as his own control--his retreatment level
i the Intial point for his own trend--no reference thus far has been

made to the actual control groups. They served to determine whether an
unknown or subconscious factor Influenced serum lipids during the study.
The average trends for the control group revealed no such factor. See
Table 1. One of the weighted-average trends--the triglyceride levels in
the normal-weight control group--did fall with P 0 .12. To be conservative,
therefore, this slope was subtracted from the slopes of the bran and
cellulose groups for the normal-weight men, in computing the probability
statements.

Laboratory variation, expressed as a ratio of the laboratory variance
to the residual experimental variance, was 1/16, a negligible quantity as
a possible factor affecting the analysis and interpretation of these data.
The standard deviation for the laboratory, calculated over each two-month
period, was found to be 5 mg/lO0 ml for serum cholesterol and 8 mg/l0O ml
for serum triglyceride.

4. CO E T. A number of studies reporting the effects of whole or
fractionas-g-an•products on serum lipids have produced varied results,
but the majority support the vjiw that whole grain and whole grain products
tend to lower serum lIpids.' z In our study CMC lowered the average
triglyceride levels by 75% in normal-weight subjects, and bran lowered the
average serum triglyceride levels of normal-weight subjects by 60%. We do
not know the mechanisms by which bran and CMC lowered serum lipids. Some
possible mechanisms suggest that nonnutritive substance (1) increases the
excreton of bile acids by increasing catabolism of cholesterol In the
1lbor,11 (2) shortens gastrointestinal transit time, thus allowing less
time for lipids to be absorbed, and (3) absorbs water, bile salts and other
solutes Including lipids thus reducing absorption of lipids. None of these
hypotheses however,explains the fact that serum triglycerides in our normal-
weight men dropped more quickly than serum lipids in our overweight men



ingesting bran and CMC. If nonnutritive substance lowers serum triglycerides
more quickly in non-obese men, then other dietary factors probably play a
role, Oneof these could be the ingestion of excessive amounts of refined
carbohydrates by the overweight men. Sugar, for example, not only
contributes to obesity but ts an important cause of hyperliptdemta.23

Our study supports the opinion that nonnutritive substance (bran
and CMC) lower serum lipids. And in particular, we found that the most
striking lowering effect was on the serum triglycerides in men taking
CMC who were not overweight,
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Table 1. Mean Tends (B nper week) of Serum Triglyceride and
Serum Cholestero~ Levels as Determined on 36 Volunteers
for 12 Weeks.

2Averages Weighted Averages

No.
of B s(i) Prob. iFt s(b~w) Prob.
Vol.

Serum Triglyceride

Controls

Normal Weight 9 -0.43 0.93 NS, -0.53 0.30 0.12AOverweight 5 -0.33 1.70 NS, 0.80 1.36 NS

Bran

Normal Weight 4 -2.88 1.77 0.08 -3.48 1.69 0.05
Overweight 6 - .60 1.86 NS -2.06 0.71 0.01

Cellulose

Normal Weight 5 -4.78 1.95 0.02 -4.12 0.90 0.001'1Overweight 6 -0.36 1.72 NS -.85 0.38 0.02

Controls

¶Normal Weight 9 0.22 0.70 NS 0.09 0.56 NS
Overweight 5 '0.37 0.78 NS -0.78 0.62 NS

Bran

Normal Weight 4 -1.49 0.96 0.07 -3.42 0.59 0.001
Overweight 6 -1.65 1.11 0.08 -2.85 0.68 0.001

Cellulose

Normal Weight 5 -0.74 0.85 NS -0.98 0.75 0.10
Overweight 6 1.04 0.75 NS 1.52 0.80 NS

t Swjbj,

wi 1/bi
V(F)- Es2y~x(D.F.-) W ~2 (.. ~Ew' /w
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ANALYSIS OF AN ERROR-TIME RESPONSE PERFQII4ACE

Michael Hacekaylo
U.S. Army Electronics Command

Night Vision Laboratory
Fort Belvoir, Virginia

ABTRACT, The analyses of the error-time response performances of
groups of naive subjects permitted to make discrete right/wrong decisions
are presented for three experimental display pauels of increasing comn-1.
plexity. The panel designs were based on a circular representation oflight bulbs, where the lights corresponded to the angles of a circle. The
first panel design consisted of a ring of lights that portrayed one con-
tiguous angular representation by the lights. A contiguous representation
of light was defined as a domain. The complexities of the second and
third designs were increased to two contiguous semicircular representations
of the ring of lights, where for each design the semicircular representa-
tives were defined as two domains. The function of the panels was to
display the azimuthal angular source location of infrared lasers whendetected by infrared detection systems.

The subjects were randomly selected from a large population having
no prior knowledge (zero degree of learning) of the panels and separatedinto three groups of seven subjects each. Each subject evaluated two
of the three panels in an ABBA manner for og nd onl set of six
trials per panel. Such a group of subjects, constrained to the same
degree of learning of the panels and limited to the one set of trials, is
defined as an Usn for this analysis.

The subjects were instructed to mark on a response panel as accurate-
ly and rapidly as possible the corresponding angular light of the stimulus
panel, vLiz, the display panel. The response panel was a five inch circle
drawn on a 8 inch by 10 inch paper.

The number of errors of the eigengroups was analysed as a function
of time for each of the experimental designs. It was found that for theexperiment, the error-time response equation is log E a -2n log T + K,
where E is the number of total errors per eigengroup, n is the number of
domains of the stimulus panel, T is the mean time for the total number oftrials for each sigengroup per system, and K is a constant. It was nec-
essary to introduce new terms, i~e., domain and esigngroup to unambiguous-

t ly define the stimulus panel and interpret the results consistent with
the equation,

1. INTDU•N. The purpose of this paper is to present an error-
time analyses of the designs of the informational, display panels ofinfrared detection systems. The systems detected and displayed the
azimuthal angular position of a laser souro. to a crew during a lamer-tank
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engagement as shuwn in figure I.. Since the error-timo response perform-
,ance of a well-trained crew would more apL reflecL the selectivity and
training of the crew, an evaluation procedure was requilred that would
reflect the panel deF, -H rather than the personnel capahility, training
and cumulative learning process. To implement the procedure iL was
decided to ,mploy naive subjects who had no knowledge of the systems,
exposed only to instructional procedures (without prel.iminary learning
trials) and constriiliied to make toneand only o•.n decision per trial, The
dec:iion would be considered right or wrong. The resul Ls should be

idLffirent than thu cumulative learning performance where error decisions
wore al.lowed until the correct dos ion was made, Gagn6 and Foster (1949).
In other procedures, errors were truated as partially correct answers
(Fitts and Seeger, 1.953), and the error-time response data are statisti-
cally treated to determine the mean and standard deviation of thle error-
time parameters. These parametors tire interpreted as how rat from the

Scorrect value the errorfs arc, a a function of learning and response times,
The determination of the number of discrete errors as a funciteon of time

Sfor a group of subjehts, Who wore not trained nor subjected to the
cumulative learning process, is not apparent in literature.
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In t hispaei, theorrr-imere pos pefomac of groups~ of
individuals subjected to only one set of trials resulted in a frequency-
distribution curve which wan different than a cumulative performance curve,
The mathematical analysis of error-time response data of random groups of

* individuals subjected to the one-trial set method appears to be signif1-
cantly new. To assure that the groups were not subjected to a cumulative
learning process, each subject was instructed as to the procedure and
then dismissed after evaluating the panels. In this manner, each group
was considered to be of the same or identical state of conditioning or
training for all sets of trials. Such groups are defined as •inU3 .I2A,
(The word, Ajj=g means proper, inherent, peculiar), In a fuller context,
the error-time response performance of eigengroups is properly satisfied
only when the groups are subjected to the one-set trial method.

2. HETHOD. The error-time response performance data were obtained
on panel designs similar to those of Pitts and Seeger (1953). Due to the
similarity, the Fitts and Seeger experiment is briefly described. Their
experiment, in easence, was to determine the learning skills of matched
groups of individuals to a singlefold response. The stimulus panel had
a ring of eight equally spaced light bulbs. The stimulus was a light
flashing on. This action keyed the subject to associate the light with
the angular position on the ring. The response panel had a stylus. The

response was the action by the subject in moving the stylus to the
corresponding position on the response panel as the interpreted position
of the stimulus panel, (Two variations of the stimulus panel were

geometrically configured with increasing complexity to simulate the ring
design. The corresponding response panels were also increased in com-
plexity. The S-R compatibility of those designs were also determined.)

The panel designs reported here were also based on a circular repre-
sentation of equally spaced light bulbs. Since the physical entity is
the light bulb embodying the stimulus, the physical entity (light bulb)
is defined as the . The stimulant and the configurational
display of the stimulant (ring of light bulbs) on the stimulus panel is
defined in this paper as the j4gsjjlgand, The significands were geomet-
rically configured to increase the complexity of the stimulus panel for
the sin8lefold response. The three designs are now described.

nyjA, The sisnificand of the panel was a three and one-half inch
diameter ring of 36 equally spaced light bulbs as portrayed in figure 2(a).
The ring was positioned on the front surface of a box 4 inches wide,
8 inches long and 2 inches deep. The light bulbs were angularly marked

* in degrees from sero to 360 degrees in ten degree increments in a clock-
wise direction with zero at the top. The continuous clockwise direction
of the marked light bulbs is considered as a om of the significandI
ioe., one contiguous representation of the stimulus panel as portrayed in
figure 2(b). When a light came on it signified the angular position on
the ring. ,
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Pan -1 Ti he si~tificand of the panel was a three and one-half Inch
diameter ring of 36 equally spacd light bulbs marked in angular mile as
portrayed in fiture 2r). The btno was positioned on the cront surface
of a *box identica3 t thdimensions ae in panel A. The lleht bulbs wereangularly marked In nalp. krom zearo to 3200 in 177.78 mil increments in a

ounterclockwise dire,:6on with zero at the top for one-half of the mircle.•.I (There are 6400 milta per 360 degrees of a circlep therefore, each position

•iiicorresponds to 171.78 mile an well as 10 degress.) The angular arking
• started at sere again at the bottom, and continued in the counterclockwise
i• direction to 3200 at the top, The two halves completed the circle, The
, ~two counterclockwise directional Iterations of the marked light bulbs are

considered as two domains of the mignificand, i.e., two contiguous repre-
'o• sentations of the panel as shown in figure 2(d). When a light came on, it
* signified the angular position on the ring.

g.g. The significand of the panel was a stimulant in the formas an alphanumeric readout display as portrayed in figure 2(e). The
display window wae positioned on the front surface of a box of identical
dimension as in panel A. The first of three characters was a letter, L
or R, and the next two were digits ranging from 00 to 32. The letter R
indicated a circular representation in a clockwise direction. The numeri-
cal values indicated the angular position in 100 mil increments (equivalent
to 5.625 degrees) with zero at the top and increasing to 3200 mile for one-
half of the circular representation. The letter L indicated a circular
representation in a counterclockwise direction. The numerical values
indicated the angular position in 100 mil increments with zero at the topI
and increased to 3200 mils for the completion of the circular represents-
tion. The one clockwise and one counterclockwise directional represents-
tions of the circle are considered as two domains of the significand, i.e,.
two semicircular representations of the stimulus panel as shown in figure
2(M). When an alphanumeric readout came on, it signified the angular
position on the circular representation.

R s rnlj. The response panel was identical for each panel.
A five inch circle was drawn on a S x 10 inch sheet of plain paper. The
circle was divided into quadrants and marked into degrees and mils as
followei Zero degrees (0') and nero mils (0 mile) were marked at the top.
In a clockwise direction, each quadrant was successively marked 90*0
1600 mile; 180°, 3200 mile; 270', 4800 mile; and again at the top, 3600,
6400 mils. A pencil was used for marking angular positions with an
on the circle.

3. P. Twenty-one U.B. Army enlisted men of all ranks, who
were not formal y matched but had no prior knowledge of the experimental
panels, were randomly selected and separated into three groups of seven
subjects each. One at a time, each subject was thoroughly briefed on the
operational procedures of two preselected display panels just prior to
evaluation. The subject was instructed as follows: As quickly and as
accurately as possible, read the angular representation of a light (or
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digital readout) and the appropriate direction when the stimulus light
came on, and mark with an "X" that angular position on the circle of the
sheet of paper. The position of the intersection of the "X" was consid-
ered to be the angular position, For familiarisation the subject wasr
given two preliminary runs if so desired.

Each subject performed a series of six trials on the two preselected
cases in an ABRA manner for a total number of 12 trials, On a prepro-
grammed schedule of randomness, each subject read the angular position
and marked the circle as quickly and accurately as possible, There were
three "XW"s per response (paper) panel since one panel was supplied for
each A, B, B, A sequence. The time interval from when the light came on
to when the subject marked the panel was measured to 0.001 second, how-
ever, the time for each trial was recorded to the nearest 0.01 second, It
is assumed that the reaction-time error introduced by the investigative
team for the time measurements was constant for the trials.

Upon completion of the set of trials, each subject was dismissed.
Care was taken to insure that subsequent subjects for evaluation did not
associate with any of the previously dismissed subjects.

The display panels were evaluated in a room that consisted of a 36

inch high bench, chair, and associated equipment required to activate
the lights of the panels. The panels, two at a time, were positioned one
on top of the other on the bench in the following sequence: for sigen-
group 1, panel A on panel C1 for eigengtoup 2, panel B on panel C1 and
for sigengroup 3, panel B on panel A. It is to be noted that the sequence
for eiSengroup 2 was inaorrect to maintain proper counterbalancing block
order. However, this flaw did not appear to be evidenced in the analyses
as described later, The only persons permitted in the room were the
subjeco anrd the investigative personnel.

For each stimulus panel angle (light), three angular resolution ranges
for determining the accuracy of the response panel angle 1'X1 were con-
sidered to be a) ±40 degrees; b) ±20 degreesl and c) ±10 degrees, The
readout angle was considered as an error if the response angle was greater
than the angular resolution for each stimulus angle, l.e., each response
angle would be a right/wrong decision for three ranges,

The angular position marked on the response panels (from the pro-
programmed readout angles) were measured in degrees, This was done by
ungnl a transparent template graduated to 0.5 degree which was superimposed
on the marked response panels. The accuracy of the marked angle was
measured to ±0.5 degrees.

The number of errors that each subject made with respect to each of
the three ranges for a sot of six trials for each panel were counted.
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The average times of the six trials for the Panels that each subject

Seach of the 252 trials wore tabulated for data reductiona
W 4. RSSULT. The mean time and number nf angular errors in each

range for the sat of six trials for the subjects are uhown in Table 1.
The table separates the subjects in their respective eigengroups for the

i panels evaluated. The average of the mean times as well an the total =

errors per range for the groups for each panel are also shown in Table 1.
Note that the errors are considered as completed events and that the
standard deviation of the angular errors have no significance in this
analysis.

An accepted method for the portrayal of the frequemcy-distribution
data of Table 1, is to plot the number of errors (per subject) as a
function of the mean time (per subject). To illustrate the method, plots
of the number of errors in the range +40* as a function of the mean time
of the subjects of the groups for each of the panels are shown in figure
3. The data presented in such a fashion cannot be clearly interpreted.
The only two significant observations that can be made are as follows:
The first is that the error-mean time response performance curves of the
two sigengroups for the same design exhibit some d4gree of similarity,
and the second is that most of the errors occur between 3 and 5 second
time interval.

tHowever, if the data are plotted in a different fashion, a strikingly
new #at of parametric curves are generated. if, for the data of Table 1,
the number of total errors, E in the range +400 per elgengroup is plotted
as a function of the mean time on a log E va log T scale, it can be seen

* that two distinct linear curves are generated as shown in figure 4. The
eigengroup datum points for panel A fall on one line, and eigengroup datum
points of panel a and panel C fall on a second line. The two curves are
separated by at luast one order of magnitude in the error count, and this
separation indicates that there is an uniqueness between penal A and
panels B and C.

The curve for panel A can be expressed as

A4log -- 2 log T + 1,16 (1)SA,40 TA

where EA,40 is the total number of errors +40' per Sigengroup for panel

A; TA is the mean time per eigengroup of panel Al end 1.16 ig 4 constant.

The negative sign is interpreted to mean that as the amount of time is
increased for reading the stimulus panel angle and marking the "X' on the
response panel, the number of errors decrease,
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HUMAN FACTORS DATA, N-252

ligengroup I
Panel A Panel C

Subject Mean Time Angular Errors Mean Time Angular Errors
(see) (Number) (BSa) (Number)

0•,4 -20" 10W ±40 i0 10,

1. 5.85 0 0 0 5.86 1 21 21
2 2.83 0 2 4 3.45 0 0 12
3 5,10 0 1 2 5.84 1 1 1,
4 2.58 0 0 2 2,96 1 1 1
5 2.95 1 1 2 3.52 4 5 6
6 4.68 0 0 2 3.98 0 0 1

1i~e 5 It~ 4.33(Ava) 8 i t
Eigengroup 2

Panel B Panel C
Subject Mean Time AnSular Errors Moan Time Angular Errors

(See) (Number) (Sac) (Numboc)
kAý640 6 110 9 ±040 6 AI *

8 3,78 0 0 1 3.51 1 1 1
9 4.38 1 1 3 3.37 0 0 0
20 4.11 0 0 1 3.66 0 0 0

'1 11 5.06 0 0 1 3.87 0 1 3
12 4.59 0 1 2 4.23 0 1 1
13 11.51 0 2 3 10.08 0 0 0
14 LIZj 2

Ave) 15 WT 93(Ave) 3 6 10

Eigangroup 3
Panel B Panel A

Subject Mean Time Angular Errors Mean Time Angular Errors
(see) (Number) (8ea) (ubr

15 2.95 5 5 5 2.90 0 1 4
16 3,3•4 4 6 6 .75 0 1 3
17 3,65 3 4 5 3.49 1 1 4
is 1.87 4 6 6 0.98 1 2 6
19 2.79 5 5 6 2.55 0 2 4
20 3.24 1 1 4 3.18 0 2 4
21 g~ 21 2 L

3.26(Ave) 2 27 34 .(Ave) 2 9 29

Table 1. Mean time and number of e :orm for each subject per elsengroup
tabulated for each angular resolution ranS. per panel.
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V The curve for panel B and panel C can be expressed as

.og 1,C,40 z - lo0 Tc + 3.38 (2)

I k ,where EB,Co4O is the total number of errors ±40*, per sigangroup for

paneXl B and C1 T is the mean time per sigengroup for panels 3 and C;

and 3.38 is a constant.

.The similar plots of the number of total errors ±20 per iegangroup
Sare shown in figure 5, The curve for panel A can be expressed as

'I1 :, log 3 A,20 E -2 log TA + 1.86 (3)

where EA, 2 0  the total number of errors +201 per esigengroup for panel A,

4 TA t the mean time and 1.86 is a constant. The curve for panenl B and C

can be expressed as

log 93C2 -4 log T35  + 3.5 (4)

where the terms have the same comparable definitions as for Eq. (2),

The plots of the number of total errors ±10° per eigengroup art
shown in figure 6. The curve for panel A can be expressed an

o1 0 A110 Is -2 log TA + 2,35, (5)

and the curve for panels B and C can be expressed as

lotS BClO " -4 log TBIC + 3.72 (6)

where the terms are defined similarly as those in Hqs, (1) and (2).

The general equation can be expressed as

log E m -2n log T + K (7)

* where I is the number of total errors per sigengroup, n is the number of
domains of the significand of the stimulus panel, T is the mean time for
the total number of trials for each eigengroup per system, and K is a
"constant. The general equation and the definitions of the terms are
limited to the results and discussions of the above analyses of the error-
time response performance for a singlefold response.

5. D, The purpose of this experiment was to evaluate the
human factors of three variations of a display panel by subjects with sero
(minimal) bias, The mathematical analysis of the error-time response

performances of groups of "unbiased" individuals resulted in a new
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frequency-distribution equatioa. In order to maintain clarity in desarib-
ing the experimental designs and procedures, it was necessary to intro4qace
and define neklpartmetera whichv4ouId b the analyse: :f the

panels and interpretation of the equations. The three display panels were
designed to perform tha.sams responase function, but •the complexity and
domains of the JSinificands of the stimulus panels were-Inroased. InA

pattidular, the' tbth6d 6f the angular nadout& were chgnead from the
circular display of degrees in one direction of one domain of panel A to
the two circular sequentirl displays of mils in the same direction of two

wI domains of panel BS and finally to the alphanumeric readout of mils
generating two semicircular dinplays in opposite directions of two domains
of panel C.

The subjects# seleuted at random for this experiment were considerad
to be identical, but not matched with respect to knowledge and training
associated with the designs. (Rancom groups are comprised of smbjects

* which would be considered representative of a large assembly of those
subjects, whereas matched groups are defined an groups comprised of those
subjects whose evaluated charactaristic5 have been found to be similar
within some norm of a criterion. Both groups can be considered an sigen-
groups if they are constrained to being nearly the same state of knowledge
and training, and evaluated once and only once for one set of trials for
each of the experimental designs.)

The curves for the three error ranges fo: the panel having one domain
(panel A) can be portrayed by an empirical equation, log R a £(log T)
with each having the same elope of -2. The displacement constant increases

* from 1.20 to 1.86 to 2.35 with increasing angular readout resolution. The
curves for the three ranges for the panels having two domains (panels B
and C) can be portrayed by the same empirical equation as above with each
having a slope of -4. The displacement constant increases from 3.38 to
3.57 to 3.72 with increasing angular readout resolution. Since the slope
of the general equation is -2n, where ui is the number of domains, and the
constants, increasing with increasing angular resolution as well as number
of domains, it appears that the general equation is an e function
of both the number of domains of the panels and the resolution of the
response data. This implies that the general equation is independent of
the amount of training of the eigangroups. However, it is logical to
expect that for a given number of trial nets, the total number of errors
per eigengroup would decrease with increased level of training. Since
it is not known how the training would effect the equation, if at all, it
is assuamed that the general equation is an implicit function of training.
In order that the error-time response experiment to be meaningful, it is
required for the number of trials sets be sufficiently large so that at
least one error be committed per trial set for each of the experimental
desijns.
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The increased complexity, 16e. changinag the significand from a
circular representation of two domain@ of panel D, to an alphanumeric
representation of two domains of panel C had no apparent influence or
deviation from the linearity of the curves representing thoie panels.
The lack of deviation is not unexpected as a result of the Canng and
Foster (1949) studies,

It is realised that the analyses presented hers are of a small sample
evaluation of groups of individual subjects. However, the analysis of
variance indicates that trials of the right/wrong decision-tLimed response
performances on the three systems are valid (F(5,65) w 5.08; p<0.001).

The analysis of variance for the systems (F( 2 , 1 5 6 ) w 8.84; p<0.001)

indicated that the systems were different, and that TrialXSystem
(F(10,156) a 0.39) was not significant. Some learning did !wccur for the

subjects (six trials each), however, *he learning did not interact with
the systems, and all subjects learned equally to about the same degree.

i From the above discussion, it in postulated that the general equation

is valid for other error-time response experiments similar to those
described in this paper. Efforts were made to apply the error-timeS~response data of Goaing and Foster (1949) and Pitts and Seeger (1953) to

the analysis. This was done for the purpose of subjecting Eq. (7) to
experimental results of other investigators for corroboration. The error-
time response equation could not be generated from the above sources due
to the following reasons: (1) the mean time was measured only for the
correct choice which included the wrong choices until the correct choice
was made; (2) the total number of errors were determined an a function of
preliminary and accumulated training8 and (3) most importantly, the error-
time measurements were not made on eigengroupo, i.e9, those groups having
identical prior knowledge of the panels, and the same acquired learning
for each set of trials for the entire series of trial. sets. Further
investigational work is required to sabject the general equation to
experimental verification.

6. S. , The experiment presented here is similar to those
reported in literature, and the stimlulue-response procedures art standard
practices. It is known, in general, that as a subject takes loss time to

make decisions, considered to be riSht/wrong, the number of errors
increases and the standard deviation becomes larger. However, the
experiment here differs on two important aspects with respect to the
control of the subjects and data analyses. The first is that the subjects
were separated into groups of equially biased knowledge (no pretraining)
concerning the panels and were not subjected to a cumulative learning
prncess for the entire eeries of trial se•s. The second aspect is that
an error was considered as a discrete response of a right/wrong decision

and the errors were analyzed as a function of the mean time of the total
number of decisions per eigsngroup. The analyses of the error-time
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equations necessitated the introduction of now parameters iTU order tounam~biguously define the stimulus panels and interpret the procedures andresults ionsistntn with the Bquations, The general equatiou n Is a ths-

matical ecxpression which, for this experiments describes the relationship; between the number of errors of right/wrong decisions and the mean tiLme
i in makinj the decisionse
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RELIABILITY ANALYSIS
OF AIRFIELD LIGHTING SYSTEMS

Fý: Frank Kuo

Edward S, LindowUS Amy Corps of Engineers
Construction Engineering Research LaboratoryChampaign, Illinois

A CT The reliabilty analysis of a system with multtple types

of componen s under maintenance is a complex problem. This paper presents
a model for such analysis with specific application to airport lighting
systems. A set of consecutive coefficients is introduced to account for
system failure criteria which includes random light outages, consecutive
light outages* and consecutive 11 ht bar failures. Probability theory

Cj and simulation techniques are used along with the consecutive coefficientsin determining system reliability. The computerized model has been used

In a senstivty analysis to determine the effect on system reliability
of parameters such as unit reliability, systeM configuration, maintenance
strategy, and unit performance characteristics.

1. 1~IS TA9IJi Visual guidance lighting systems for airports provide
necessa information for aircraft operation during the approach, landing,
takeoff, and ground movement (taxiing). In darkness, inclement weather or
other eriods of low visibility, the information provided by these systems
is cr tical to safe and efficient air travel.

• • Although significant research has been devoted to improving camponantequipment•n these 11ghting systems and to delineating the pilot's Mnfor-
• matson requirements, rettle has been done to detedmne the operational
reliability of the systems currently in use. Because these systems are
acritcal to safe and efficient asrcreft operations and because o nstellation

aand maintenance coats for such sstcms are htigh, procedures to analyze the

reliability of present airfield lighting systems are needed.

The purpose of the research summarized in this paper was to develop
procedures for evaluating the functional reliability of airfield lighttng
systems.

2. AIRFIELD LIGHTING SYSTEM MOPEL. There are numerous types of
lighting systems involved in the visual guidance of aircraft traffic. The
number and the confi uration of lights in each system will depend on factors
such as the information conveyance requirements, the area to be served, the
category of operations, and the terrain.

* ,
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-configurations designed to satisfy specific information requirements, all
Si1htin systems have the common elements of a ower source, power circuitry
an 1i t transmission equipment. Because of Me similaritiesd a genert l

l be used to deftine al visual guidance lighting systems.

The model developed for this purpose consists of 12 types of components:
vommercial power, auxilary powerl control panel, control circuitry, control
vault, regulator, primary cable, tsolating transformer, secondary cable,

fixtresion, ad I% Dvison f te mdelinto these components con-
sidered function,, maintenance, physical proximity and connection, and failure
modes. Some of the components include several elements (e.g., the control
vault Includes power transformers, relays, switches, etc wh ile others are
composed of a single element (e.g,, the lamp).

SFigure I Illustrates the general lighting system model. Since the number
of components of each type can be varite (or deleted if not applicable), this

model provides the necessary flexibility to define all aIrfield lighting
systems. J

By defining the geometry of a system, the operating characteristics, and
the failure criteria, any lighting system can be analyzed using this general
model.

3. R1AD.IABLTYLOQEk. System reliabililtyis typically defined as theProabiity that A system wtll perform tts %,tnded functton In a specificenvironment for a specified period of time. However, systems which under-

go constant maintenance, as is the case with airfield lighting, are composed
of equipment of various ages and thus a time period can not be realistleally K
analyzed, For such maintaindd systems, the steady-state reliability, which
can be interpreted as the probability of the system being in a nonfailure
state while under operation, is significant.

Figure 2 is a tree structure depicting the parameters which must be
considered in analyzing the reliability of airfield lighting systems In
the steady state. Essentially three steps are required.

a. Develop the component reliability function for each type of
component.

b. Simulate the average light unit reliability.

c. Calculate the system reliability by applying the system failure
criteria.

Thus, the reliability model includes both deterministic and stochast1r
rates which must be combined by using analytic and simulation procedures.LI oThe following sections summarize the procedures employed in the three steps

of the model.



COM 914CIAL
POWER Iml

AUXILIARY]
NE

POWER lug

[ CONTROLPANKI, lull

CONTROL
CIRCUIT A

CONTRO"
YAULT lal

PINGULATOR
IN$

PRIMARY
CABLE 107

180LATING
THANIPORMIR Is$

INCONOARY
GAILK Im9

PIXTURB
1-10

LEN$ I'mi I

LAMP I-it

GININAL LIGHTING IVSTBM MOORL

49

mill



SY TKI

TALREE STRUCTURE IA .AUT ANALYIABLT

COPNNTSSE

50ILT M R



h 4 The reliability of each component type in
the generF1:llgHln Sy.sem model can be approximated by an exponential
distribution over the component's design life. This distribution is defined
by Eq 1 and illustrated in Figure 3.

I..,

T'IM'"::

Figure 3. Component Reliability Distribution.

Determination of the failure rate (X) for each component in the
system is quite complex when maintenance and operation practices are con-
sidered. Full-scale testing of lighting systems to determine failure rates
would be very expensive and time consuming, while accelerated testing of
systems or Individual components introduces Inaccuracies. Thus, fle d data
on system performance are the best ;ource of Information for determining
a component's reliability function.

Considering the field data anticipated to be available, the rel ability
function for each component in the lighting system can be expressed by;

t-

R(t) *e [Eq 21

where Cf * the coefficient of failure

Cm * the coefficient of maintenance

ts the safety time (I.e., the period of time when the component
is known to have no chance of failure).
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The coefficient of failure (Cf) for each component Is computed from
Eq 3.

Cf (no. o f component I fell 4res per 50,000 yq a3

The coefficient of maintenance (Cm) for each component Is computed from
Eq 4. m

In (-Cf In EEq 4)Cmi • -( t --. /}-

where tL •design life of component I

t1 m safety time for component ¶

R a average reliability for component I,

0

where Nf m failures per year for component I

NO a total number of component I in the system

Td 0 average downtime for component I (hours)
T m operation time per year (hours)

Utilizing these relationships, Eq 2 can then empirically account for
preventive maintenance, corrective maintenance, and failure rate, Preventive
"maintenance (PM) considers the component's design life, replacement time
(ite that period preceding the design life when group replacement is under-
taken&, and, indirectly, the level of PM activities (i,e,, the more PM
performed, the lower the failure rate). Corrective maintenance includes the
time to detect a failure and the time required to perform repairs, The
failure rate is the annual number of failures of that component type in a
system due to all failure modes (e,g., woar-out, human error, etc.
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, . UNIT B6Rg1AJIY, Oncr the Individual component rellabi1ities
have •been qtermlnhe, ;y can be combined to obtain a unit falability using
Eq S. The unit relabilit (Ru) is defitned as the probability that arandomly ohQsen single unit in the system will be operational when called

upon to perform, The unit Is composead of one of each component type in
t e general lighting model as depicted in Figure 4.

(1 .1R 1 (t1)] I[.-R2 (t2)_) R3 (t 3) R Ct4) ' AS (N5)

t6 (t 6 ) 'R 7 (t 7) R8 (te) 'AR (t() RtIO (tlo) Ali (t 11 ) ft12 (te2) [Eq 5J

To determine the average unit reliability, a Monte Carlo simulation
routine was developed to stochastically account for the time function and
system geometry factors, That is, the component's reliability is actually
a function of time and, in the steady-state, the component's reliability
may be at any point of time on the function, In addition, the systemgeometry, or the number of each component In the system , wtill also influence
the average unit reliability. The routine used is illustrated In Figure 5,
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For each comnponent, i selectJ
random times (t14 such that
0 < t t'

where t *replacement timie for
coig nent i

j number of component I
In the system

From the individual componentreliability functions, determine
the component reliability forH eacht

4G

LCombine component reliabilities

(R1 ) using:

Ru t~ 0 -0 11  )(1-R *)3 R3,

R4,j R51j RGIJ R7jj
R8, R9, R1  R1 *

2'j

Figure 5. Simplified framework of
average unit reliability simulation
routine.
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6. JYSTEMREiLIABILITY. An airfield lighting system fails when it does
not accurately transmit t he information required byat 'ilot for safe- operation,
of an aircraft. Since pilot perception is involved, system failure is Rub-
jective in nature. Th-'ough research studies, the FAA has established objective
failure criteria which provides minimum operating standards for each type of
lighting system.

In defining failure criteria, the airfield lighting systems have been
catagorized as linear and bar systems. The linear system criteria stipulates
the percent of random outages and the number of consecutive outages. The
bar system criteria stipulates the percent of random outages, the number of
outages in a bar creating bar failure, and the number of consecutive bar
failures.

Using the appropriate failure criteria and the average unit reliability,
the reliability of the lighting system can be determined from Eq 6 for both
categories of systems,

n ii

Rs -Wt Run' (1Ru) [Eq 6)

where Rs the system reliability

Ru a the unit reliability

n I the total number of lights in the system

i a the number of light failures in the system

W a the number of ways I failures can occur in a system of n
j * total lights without the system reaching failure by either

the random or the consecutive *ailure criteria.

The following example illustrates the application of this equation.
The example Involves finding the system reliability for a three-lamp system
(n-3) with system failure defined as all three lamps out or two consecutive
lamps out. The probability of a lamp being on is R Ta&Te 1 shows the
ei ht possible conditions in which this system can 9i; three are failures
and five are successes.
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The s yctem reliability is

Rm W1  R -i (l-M~)

R 'R3- (1-R, )o + 3 R 3al (1-R )1 +1R~ 3-2 (l-R 2

40g 3-3 ( u)3

TABLE I

Possible Conditions for Example

S S F F Sa1ucs
Lamp 1 0 x 0 0 X x 0 x F aFailure

Lamp 2 0 0 x 0 X 0 x x 0O-Light operating

Lamp 3 0 0 0 x 0 x x X x wLight failed

Wi' Wi 3 Wiu W1'

In a linear lighting stem if the consecutive failure criterion Is
not considered, Eq 6 reduces to a binomial distribution or

R RE (n) R n-i (1-R) I Eq 7)

where NR *number of random failures allowed in the system.
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'to consider consecutiveness as wel'l as random butaofs i~n thes la Ilure,,cri teria,
an analitical procedure has been developed to compute each W. Since W
i s *a mu~ti~voriate I nteger f uncti on of n;: NC , and I (where NC -a n umber o4ý
consecutive failures all~owed an'd' nand Isp~reviously-defihed), there
is a unique constant for each (n, NC, 1) which is defined here as the
Consecutive cooffi-clent, C(n, NC, ) This coefficient is the number of
ways that i outdges can be distributed in n total lights without havinqg
moro than NC consecutive outages. "Substituting the coefficient-In E

MR
4 s I4 R u' (l-RU) (Eq a]

1-0

(Note that the summation is from iuO to ixNR since W goes to zero when the
number of outages, I, exceeds the allowable random chtages, NR).

An automated procedure is used to compute the consecutive coefficients
based on the following recursive function:

C (n, NC, 1) -, C(n-l NC, I) +
C n-l , NC, i-I) C~n-NC-2, NC, I NC-l) [Eq 9)

The derivation and developmbnt of the program may be found elsewhere.1

The method for analyzing the bar lighting systems is similar. However,
the determination of WiIs much more complex due to the nature of the bar
system failure criteria. A detailed descr'Ajion of the bar systerianalitical
technique is given in the project final report~

Lindow, E. S. and Yuo, F. "Reliability Analysis For Airfield Lighting I
Sytes"Final Reot o Contract- DO-AGWI18 CELL Setme 96
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7 nm HE.AA6.sPBQ$ The reliability methodology summarized in the
previous~seco•ins wou e.,difficult to apply.manually when considering the
number Of lightsin a system, the stochastic properties of the component
reli:abili•ties, and the sophistication of the failure criteria. Thus, the
prododures have beencomp uterized In-the RAALS (Reliability Analysis-of
Airfield"Lighting System) program, This program is capable of eff!clontly
estimatfng the functional reliability of any lighting system used in the
visual guidance of aircraft. Flexibility Is provided in the program to
contidat various system configvrations and failure criteria as wWlI as'
different'"componlnt failure rates, design lives, and levels of maintenance.

Figure 6 is a-'simplified flow chart of the RAALS program, Figure 7
apresents the Input data listing, a typical component reliability function,
and the system reliability output resulting from an example problem.

B. 11CLUSIONS. The automated procedure for analyzing reliability of
airfield w ntlng systems (RAALS) is an implementable tool which can be
used to:

a. Compare the reliability of similar systems,

b. Determine where a system should be Improved to increase Its
reliability,

c. Form a basis for decisions on Implementing changes to failure
S..criteria, equipment, or maintenance policies,

d. Monit~r the reliability of a system as it becomes older or as
modifications are installed.

The RAALS program logic is based on traditional reliability theory.
However, due to the number and complexity of lighting systems and the
necessity to consider consecutiveness in the failure criteria, original
analytical techniques were developed and interfaced with traditional
theory, These techniques included:

a, Formulationi of a general lighting system model capable of con-
sidering all of the diverse equipment and geometry encountered in airfieldlighting

b. Adaptation of a Monte Carlo simulation routine to the analysis
to account for the stochastic nature of the component reliabilities

c. Derivation of the consecutive coefficient to consider consecutive-
ness in the system failure criteria

59 ...............................................
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d. Development of an anlaytical procedure to determine system
reliability which accounts for the oparation, maintenance, and failure
variables of each component

a. Automation of the combined procedures Into a concise, efficient
computer program,

Although this research effort was devoted to airfield lighting systems
the methodology developed is applicable to any system which can be similarly
defined and for which failure criteria stipulate consecutive failures
as well as random failures.
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SIMPLIFIED METHOD FOR DETERMINING
AIPPROXIMATE LOWER CONPIDENCE BOUNDhS OF A SYSTEM

WHOSE POSTERIOR RELIABILITY DISTRIBUTION IS DESCRIBED AS A BETA

Louis H. lantusse2.li
Product Assurance Directorate

US Army Armament Command

and

Robert Dostal
Us Army Nanagement Engineering Training Agency

Rock Islands IL 61201

~ I ABSTRACT. This paper deals with a simpl.ified met~hod of determining the
aproim-ate lower confidence bounds on reliability of a systems given the

system posterior reliability beta parameters A'S and BOB (integer or non-

integer) and/or trials and failures observed and the interval desired. Prior
to the development of this method, a compute% was utilised to determine the
lower bounds due to the fact that the beta parameters were, for the most part,
non-integer6 The method described in this paper was empirically developeid and
provides a method of determining approximate reliability bounds very simply
with the use of a SR 51, HP 45 etc,, hand calculator. The unsolved problem
simply stated is "Why does the method work~ as well as it does?"

I NO 0Aneed arose in APMCOM for a simplified method of
detrmiingapprox mate lower bounds on reliability, given subsystem data,

was made of current available methods, These methods are referred to by com-
parison in our paper titled, "Confidence Limits for System Reliability When
Testing Takes Place at the Component Level,' dtd 31 Oct 75. Based onL the
review of the current available methods, it was decided to see if a move
sifmplified method uould be developed which w~ould overcome some of the short-
comings ot the current methods and still pirovide results which would satisfy
our needs. A method was developed as doacribed in reference paper; however,
the mathematical expression derived empirically for calculating the lower
bound is still, to this day, not fully understood.

2. THE L2414 BOUND ON UULABILITY The lower bound on reliability is
determined as f~o lowas

Givent AS$ BS system posterior reliability parameters of a beta

I ass Confidence interval desired

*l 2BS
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A fractional. chi-squatre table is requiredl however) linear interpolatio~n
can be utilized.
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Prom this expression, approximate values of the F distribution can be
obtained for non-integor degrees of freedom.
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An BCONFIzDENCE TRUE GO&LCULATED ERROR

4,18 8.00 g969 .9

go .179 .170 0

*102.34 28,44 99 .693 692 600
95 s721 .721 0
g0 *735 .735 0

7.01 6.04 99 .234 .237 -,003
.5314 .315 -.001

7.49 6.09 921.5-%0

18.71 3.99 99 .607 1606 +0001

90 .718 .717 +6001

10.08 5.00 9g 4559 .557 +,002
95 .632 .631 +0001
go .670 .668 +4002

17,84 4.99 99 .555 .554 +4001
95 .629 .627 +4002
90 .667 .666 +1001

TZABLE 1



iA

AS B CONVIDENCZ TRUE CALCULATED EX R

98.23 4.98 99 .891 .890 +4001.
95 .913 .912 +.001
90 .924 .923 +.001

94.21 10.99 99 .816 .814 +.002
95 .843 .841 +.002

j 90 .856 .854 +,002 --

38.58 .75 99 .901 .901 0
95 .937 .937 0
90 .953 .953 0

6.12 .71 99 .521 .519 +.002
95 .669 .668 +.001
90 .743 .742 +.001

49.45 .52 99 .934 .934 0

90 .972 .972 0

647.45 .63 99 .99426 .99432 -. 00006
95 .99651 .99656 -. 00005
90 .99744 .99750 -. 00006

122.23 .68 99 .96919 .96916 +,00003
95 .98104 .98102 +.00002
90 .98604 .98602 +.00002

49.86 .35 99 .945 .944 +,001
95 .970 .970 0
90 .980 .980 0

TABLE 2
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*: •. ..• k .. . .. . . . . .. . .. . . . . .. . . . -, .. ... j r .i.. . . . . -

LOWER BOUNDS 0 SINGLE TAIL CONFIDENCE
INTERVAL (BINOMIAL DATA)

S.90 .95 ' . ,99 .. .. •* ..

3 0 .464 .464 0 .368 .360 0 .215 .215 0
1 .196 198 -. ,002 .135 .137 -.002 .059 .060 -.001
2 .035 .035 0 .017 .017 0 .003 .003 0

6 0 .681 .681 0 .607 .607 0 .464 .464 0
11 L .490 .492 -. 002 .418 .421 -.003 .294 .298 -. 004
2 .333 .336 -,003 .271 .275 -. 004 .173 .179 -. 006
3 .201 .202 -. 001 .153 .154 -. 001 .085 .085 0
4 .093 .092 +.001 .063 .063 0 .027 .027 0
5 .017 .017 0 .009 .009 0 .002 .002 0

10 0 .794 .794 0 .741 .741 0 .631 .631 0
1 .663 .663 0 .606 .606 0 .496 .496 0
2 9550 .551 -. 001 .493 .494 -. 001 .388 .390 -,0024 .354 .354 0 .304 .305 -. 001 .218 .222 -. 0043 .448 .449 -. 001 ,393 ,395 -,002 .297 .300 -,003

.5 267 .271 -. 004 .222 .226 -. 004 .150 .153 -. 003
6 .188 .189 -. 001 .150 .151 -.001 .093 .094 -.001
7 .116 .116 0 .087 .087 0 .048 .048 08 .054 .054 0 .037 .037 0 .016 .016 0

9 .009 .010 -. 001 .005 .005 0 .001 .001 0

30 0 .926 ,926 0 ,905 .905 0 .858 .858 0
1 .876 .876 0 .851 .851 0 .798 .798 02 832 .831 +.001 .803 .804 +.001 .748 4747 +.0013 .791 .789 +.002 .761 .760 +.001 .702 .701 +.001

1 .751 .749 +.002 .720 .719 +.001 .660 .68 +.002
5 .713 .711 +.002 .681 .679 +.002 .5619 617 +.002
6 .675 .673 +.002 .643 .841 +.002 .580 578 +.002
7 .639 .636 +.003 .606 .604 +.002 .2543 541 +.0026 .603 ,601 +.002 .570 .568 +.002 .507 1505 +.002

19 .568 .566 +.002 .532 .533 +.002 .473 471 +.002
10 .534 .231 +.003 .501 .198 +.003 .439 437 +.002
21 .500 .497 +.003 .467 .465 +.002 .406 405 +.001
12 .467 .464 +.003 .434 .432 +.002 .374 .373 +.00113 .434 .431 +,003 .402 .399 +,003 .343 .342 +.001

S14 401l o398 +,003 .370 .367 +.003 .313 .312 +.001
S15 .370 .376 .006 .339 .345 =.006 .284 .290 -,006

23 .135 .136 -. 001 .115 .116 -. 001 .083 .084 -. 001

17 37'.

10I

19 44 20 .0i21 .24.03 .76 .7 .0



LOWER LIMITS OF 50% CONFIDENC INTERVAL •!!(BINOMIAL DATA) -

2 0 .707 ,707 0 20 16 .181 .182 -. 001 •..
1 .293 .293 0 17 .131 .132 -. 001

is .083 .8
3 74 .794 0 9 .034 .3

1 .00 501 -.001
..206 206 0 30 0 .977 .977 01 o945 .945 0 .

6 0 .891 .891 0 2 .912 .911 +.001
.1 .736 736 0 3 .879 .878 +.001

2 o579 .578 +.001 4 .846 .845 +.001
. 3 .421 .422 -. 001 6 .780 .778 ÷.002

4 .264 .264 0 8 .714 .712 +.002
*-*5 .109 .109 0 10 .648 .645 4ý.003

12 .582 .578 +.004
10 0 .933 .933 0 14 .516 .511 +.005

1 .838 .838 0 16 .451 .455 +.004
2 .741 .741 0 18 .385 .388 -. 003
3 .645 .644 +,001 20 .319 .321 -. 002
4 ,548 .546 +.002 22 .253 .255 -. 002
5 .452 .454 -. 002 24 .187 .188 -. 001
6 .355 .356 -. 001 26 .121 .122 -. 001
7 .259 .259 0 27 .088 .089 -. 001
8 .162 .162 0 28 .055 .055 0
9 .067 .067 0 29 .023 .023 0

20 0 .966 .966 0
1 .917 .917 0
2 .869 .868 +.001
3 .819 .818 +.001
4 .770 .769 -. 001
5 .721 .720 +.001
6 .672 .670 +.002
7 .623 .620 +.003
8 .574 .570 +.004
9 .525 .520 +.005

10 .475 .480 -.005
11 .426 .430 -. 004
12 .377 .380 -.003
13 ,328 .330 -,002
14 .279 .280 -.001
is~ 1 .230 .231 -. 001

TAILS 4
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EVALUATION OF GUNNER ERRORS THROUGH TIME SERIES ANALYSIS.

Latricha Greene and John Howerton
Systems Evaluation

Aeroballistios Directorate
US Army Missile Research and Development Command

Redstone Arsenal, Alabama 35509

" ~ABSTRACT

This paper describes a procedure used at the Army Missile Coimmand
(primarily with command to line of sight systems) for modelling man
in the loop. The model developed here with its parameters can be used
to simulate data or to drive a total systems simulation.

The procedure outlined here was developed initially by L. Greene,
J. Howerton, N. Rich, and M. Wise of the Army Missile Command in
conjunction with M. Yang from the University of Florida for the optical
mode of Air Defense Systems in which a man was used to track the
target, Current plans call for using this same technique to evaluate
tracking radars during an ECM environment.

The analysis of the original work as described here was concerned
only with stationary data.
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1. Introduction

Prediction of the amount of error due co gunner tracking
of a moving target is an important phase in the development of weapon
nystnms. Data of this type occur in the form of time series. The
observations are dependent and the nature of this donendence is of
uduic...t importance,

The purpose of this paper is to present a method for evaluating
gunner error data described below, thereby defining a time series
model, This model and its parameters can be used to simulate data for
future problems of a similar nature or may be used as a subroutine to
missile flight simulation,

2. Data Description

The initial tests to determine the gunner tracking error
characteristics were conducted at Redstone Arsenal during the period
13 through 18 July 1972. The King Air, a twin engine Beechcraft, was
the target utilized for these tests.

A 16mm film camera was attached to the monocular output of the
tracker unit, This output presents the same view to the film camera
asi the binocular output presents to the gunner.

There were four gunners who participated in the tests. They were
instructed to track the centroid to the target aircraft when detaile
wo!,,, not resolvable. When resolvable they were to track the inter-
section at the wing and fuselage. The amount of error was shown to be
indlepondent of individual gunner, that is, there was no statistical
ig••.•icance.

3. Model Building

This section discusses the time series model building for the
uin~eral error, data, After examining all the data available, we conclude

thint the, data forms a stationay time series except at the beginning
whore a trana.lent occurs,during acquisition, and at the end where a
trdrioient in tntroducnd by the simulated missile in flight signal.
1,urtr with too few data were eliminated. The total number' of runs was
th,.l 1t.43. A few zionstationary data can also be seen. They occupy
S11. ~percent of ttle total,

When the data are recorded with equally spaced time intervals, we
grns'-rally unn. a linear time serios model to fit the data. A commonly
11:10d r0'tIdel [otr unIvariate time series can be written as
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Y t- 1q(at.q (1- +)

where

subscript t a time

Y t = the value of the time series at time t

I. n the expected value of y

a = white noise process, i.e,, a is independent,
2

identically distributed N(O, ca)

P) q two parameters depending on the properties of a
-' q particular time series.

.Model (1.1) in called a mixed model with autoregressive and moving
average components. It has been widely used in practice with fruitful
results (see e.g., Box and Jenkins [1], Fuller and Tookos [2), Cleveland
(3, 4), and Box et. al [51). The intuitive idea behind the model (1.1)
is the assumption that the present value Y depends on the values of
Yt in the near past, i.se,, Yt-1 Yt21..• I' Yt-p' This is the aut~ore-

grossive component

CYC" t } -l(Yt.I" + tl(Yt.2 -)+ " + $p (Yt-p

The moving average component at - t. ..... Oqa q indLcates thli&

the present value Y¥ depends not only on the present noise a but 010o

the previous noise at.l ,,,6 at.q, This ia reasoiable •ince the noise
will n9t diminish very rapidly in real situations. The noise prolongs
its influence on Y for a certain period.

In praotice when time series data are given, a model of the form
(1.1) can generally be built. The detailed procedure has been given in
Box and Jenkins (1]. There are four main steps.

a. &odol 1dgntlftcat&Qn

In this first step, autocorrelation coefficient,, partial
autocorrelation coefficients, and invorse correlation cooifticiOntN
(e.g., Cleveland (31) are used to determine the values of p dind ri iln
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model (1.1). The value p in called the order of the autoregressive
component and the value q is called the order of the moving average
component in a mixed model (1.1).

[b. Parameter Estimation

a q After the values of p and q have been determined, there
are p + q + 2 parameterse p, ol 02 f l 0 ' *al, "** q and the
Variance a of a to be determined. The method used to th•atme esla

and 9'I has been described in Box and Jenkins (Chapter 7, (11),
Clevenson (61, and Parsen [71]. The main technique is the maximum
likelihood estimation. Generally, the calculation needs the help of
spectral density estimation (7] or nonlinear least squares estimation

2The estimated values Q. t. and ga of the parameters
2

P, i, Q and cia, respectively, are not generally equal to the real value
of these parameters. The model with estimated parameters

t Yt-p t lt-
- 'Yq~ - )+ '+1' -p-• +a

- ,., - at:q (1.2)

q -

may not fit the original data well. Diagnostic checking determines
whether our estimated model fits the data well. The residual process
(It] is examined, If the (I is close to a white noise process, the
model is €onldered to be adequate and the whole model building procedure
is over, Otherwise, we go to the next xtep.

d. bodification of the ModeL.

If the model we built is found inadequate through the
diagnostic checking, we will try to fit the data by a now modified
modal, Generally, the residual process (9t] will reveal some information
on how the model should be rebuilt, Zn most cases, a pair of new values
of and q will be obtained. Using these new values of p and q, weI undergo steps b., €., and d. for this neow model building.

All the four steps have been carefully followed for building the
gunners' error data model. For the (apparently) stationary time series,
with azimuth and elevation both counted, the total number of realisations

.: .0 7

• " 1 . . . ... , , T , II7 6,1



was 248. Each time aeries of aulmuth and elevation in run separately

Jlv (Tables I and 2). Sixty-two percent of the stationary series can be
fitted well by a third order autoregrea•ive process (p v 3, q a 0 in

A moadel (1.1)), i.e., 4

"t", - + $2Yt-2 - + 3 -,t,3 1 4&) + at

(1.3)

A few data can not be fitted well by (1.3); they are fitted by a more
complicated model. These models and their percentages of the total
data are given in Table 1. Due to the biological and psychological
differencea among gunners, there are variations in these parameters,
The means and variances of theme parameters are also given in Table 1.A .~ TABLE 1. GUNINER'S ERRO MNODEL FOR AZIMUTH

General model (3rd order autoregreasiva process) (62.907.)

1 e2 *3 a

Mean 0.0393 0.4489 0.2362 0.1245 0.0128

Variance 0,0108 0,0170 0.0066 0.0087 0,0001

Special Model eVaa
II Mean Variance.,

1) *4 0 (17.74%) 0,1490 0.0050

2) o, * 0 (4.84%) 0.0962 0.0076

3) o'6 . 0 (5.65%) 0.0485 0.0169

4) o7 o (3.22%) 0.1218 0.0060
5) to 0 (0.81%) 0,1844 0.0000,!

6) so 0 0 (2.42%) 0.0196 0.0142

7) sio 0 0 (1.61%) 0.0560 0.0145

8) oil 0 0 (0181%) 0.0970 0

77

-:



T. 77,M7771

. . . . . . . . . . . . . . . . . . . . . . . . . . .... . . ...-- ... 4

TABLE 2. GUNNER'S ERROR MODEL FOR ELEVATION

General model (3rd order autoregresaive proc.s.) (60.48%)

Mean -0.0515 0.3692 0.2165 0.1448 0.0045

Variance 0.0124 0.0188 0.0051 0.0057 0.0001

Special Model

Mean Variance

3) 04 • 0 (15.32%) 0.1535 0.0014
2) 05 0 0 (8.87%) 0.1253 0.0088 1

4) 07 0 (4.25%) 0.11225 0.0037
7I 0

5) te 0 (0,81%) 0.1497 0

6) 09 * 0 (0.81%) 0.1294 0

7) o • 0 (0.81%) 0.1178 0

S8) O • 0 (0.81%) 0.573 0

A question ariuem whether the azimuth error and elevation error
are dependent on each other during a gunner'e aiming. The date show
that we can consider the asimuth error and elevation error to be twoi'•iindependent: pr:oceses .e The followingl procedure is followed.

A general model describirng the relation between two tiime series it
V a linear transfer function model. Let Xt be the time series of saimuch

"and Y be the time series of elevation. A linear transfer function
4., model can be written ai

S(Yt 4" - Cil(Yt-l, " Y + '"+ am(Yt:m "

+ pl(Xt- -x) + ,+ Pn(Xt-n 4x) + t(4
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where

4Xa I(X)

Nt,- a noise process

mi n u the numbers of past values of X•and Yt oan which the present•• ~~Yt depends. ,•:
t

Intutitivelyl model (1.4) indicates that the present auimuth value Y

may depend on the previous values of both azimuth and elevation. This
model has been used in many practical situations and gives good results
(see e.g., Box and Jenkins (1]), Since we have already found a good
model for Y in the previous model buildingS, we may combine the Y I
model and (1.4) and have

a .. ,(X - 1x) + + n(Xt.n - x) + (15)

where a is the noise process from the model of Yt Since a is a

white noise process, the values O's con be easily estimated (Box and
Jenkins (1) p. 380).

An attempt has been made to fit all the corresponding pairs of
azLmuth evror data and elevation error data by model (1.4). Except for
a few exoeptioup (1 percent of the total), the 0 values are very small
(less than 0.05 for all 01 , A2,t,, 025). Hence, we consider that the
error in elevation has no significant influence on that in alimuth. A
similar model fitting by replacing X by Y and Y by X in (1.4) has also
been run for all pairs of data. An independence relation is also
obtained here, Hence, we conclude that there is no significant
dependence between azimuth error and elevation error,

4. Simul.ation PocOedure j
In order to simulate the total performance of a guided missile

system with a man in the loop, we may use tite gunner's model described
in the previous section, Considering the nonrapeatabilitcy of man's
reactions, it must be realised that for any single simulation the error
model will not give the same results as given by man, However, mat's
behavior on the average should agree with that of the seror model.

i
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Simulation of a gunner's behavior may be performed as follows:

a) Choose 2 random numbers and in [0, 1).. 71 in used to
construct uuimuth arroro if

71t (0, 0.62901, a third order Autorugressive modil will beIT.used,

i'(0.6291, 0.8064), a fourth order autoregressive model with
*4 p0will be used,

IJ~ (0.8065p 0.85481, a fifth order autoregressive model with
05 0 will be used,A vli 10.8549, 0.91131, a sixth order autoregressive model with
t6 0 will be used,

i Fe 1 0.9114, 0.943518 a seventh order autoreoressive modelwith o7 o 0 will be used,

.- A yl (0.9436p 0.93161# Ansighthorder autoregreseive model with
$p 0 will be used,

y c (0.9517, 0.97581, a ninth order autoregressive model with
o9~ will be used,

ylc (0.9759, 0.99191, a tenth order autoregressive model withJ
0o will be used,

~1'0.9920, 1.00], aneleventh order autoregremaive model-with
oi1 o 0 will be used,

usdThus, we have chosen a model for ahimuth error process. i
usdto construct elevation error, if

v2  100 0.6048], a third order autoregressive model will beused,
y~ 10.6049, 0.75801, a fourth order autoregressive model with

*W0 will be used,

Y24 [0.7581, 0.8467], a fifth order autoregrsssive model with
$5 0 will be used,

721 10.8468# 0.91921, a sixth order Autorearessive model with
v~q (.9193 0.96 6] * 0 will be used,

y~c 0.903l .9661,a seventh order autoregressive model
with *7 p 0 will be used,
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J2C [0.9677, 0.9757], an eighth order autoregressive model with•i [ *8 s 0 will be used,

[2 0 (0.9758, 0.98381, a ninth order autoregreseive model with72-1 .9 o 0 wiLl be used,

'72 (0,9839, 0.9919], a tenth order autoregreuaive model, with *

's 0 will be used,

,26 [0.9920, 1.0],an eleventh order autowegtess.ve model with 4
oil o 0 will be used. 4b) Use normal random number generator to generate the required

2parameters , 0•', and ce'

a) Using a polynomial root solver, check the roots of Xp .-

fill ,,,,. w0. If any of the roots i greaterthanor equal to 1, discard
this set of s's and select another group of parameters.

d) Let X denote the asimuth error process and Y denote the

elevation error process. Then according to the models and parameters
chosen by steps a) and b), we can dimulate Xa tnd ¥Yc consecutively

by generating normal random deaivat•e from N(0, a)a

e) If the perfect aim of a gunner at time t is (Att, E), then
'*1 : our simulated coov'dinate of a gunner at time t is (At i Xto Et + Yb),

A simulation examplet
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6. Sample of Data Plots
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W Sample of Data ?~lots
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7. Future Use

Although the original work dealt mostly with a stationary,
set of data, there is no reason why this technique could not be used
with non-stationary data simply by using the difference equations as
outlined inTime Series A Forecasting, and Control, by Box.
and Jenkins.

A study is underway to evaluate the ROLAND-Air Defense System
during an ECM environment. This is a very critical aroa and one that
so •far has not been investigated with a systematic quantitative approach.
The approach offered here would be valid regardless of the type of
engagement (optical or radar). Simply stated: A series of target
tracks are carried out and a time series model is built of the reaulting
radar errors as a function of ECM and other parameters.

The final output of this study would be a computer program (or
subroutine integrated with the weapon system simulation) that could be
used for predicting end game revults as a function of different types
of ECM throughout the ROLAND syctem engagement boundary.

The basic data needed to build the proposed model comes from a
video camera bore-sighted to the vrack radar. An investigation of
the advantages of putting a missile beacon on the target is being1 conducted at this time.

REFERENCES

14 Box, G, E. P. and Jenkins, G. M., Time Series Analysis, Forecasting
and Control, Holden-Day, San Francisco, 1970.

2. Fuller, F. C,, Jr. and Tsokos, C. P., "Tim( GSeries Analysis of
* Water Pollution Data," Biometrics, 1971, pp. 1017-1034•.

3. Cleveland, W. S., "itting Time Series Models for Prediction,"
Tachnometrics, 1971, pp. 713-723.

4. Cleveland, W, S., "The Inverse Autocorrelations of a Time Series
and Their Applications," (with discussion by Parzen), Technometnics,
1972, pp. 277-298.

5. Box, G. E. P,, Jenkins, G. M., and Bacon, D. W., "Models for
Forecasting, Seasonal and Nonseasonal Time Series," Scal
Analysis of Time Series, ed by B. Harris, Wiley, N. Y.1-967.

S, Clevenson, M. L., "Asymptotically Efficient Estimates of the
Parameters of a Moving Average Time Series," Stanford University
Tech. Rep. 015, 1970.

7. Parzen, E., "Efficient Estimation of Stationary Time Series Mixed
Schemes," SUNY/Buffalo Tech. Rep., 1972.

90



A METHOD FOR DETERMINING PA1kWISE
CONTRASTS FROM A FRIEDMAN TWO-WAY LAYOUT

BASED ON A THEOREM BY MARASCUILO

,Jimmia C. DeLoach and Eugene r. Dutoit
United States Army Infantry Center

oFort Benning, Georgia 31903

1. INTRODUCTION.

S~The authors wish to express their appreciation to the US Anmy Research
I• Office and the Clinical panelists at the Twenty-second conference in the
I~ii Design of Experiments Mor their valuable comments about this problem,.i

In recent years there has been an increased effort to produce more
and more non-parametric statistical testa. These test. have had broad
based applioations in education and psychological research and to some
exttnt in military testing and evaltealion of new products and trainingmethods. i

The value of such non-parametric t~sts is well known. Although it
is not the purpose of this paper to demonstrate the usefulness of theme
tests, it is worthwhile to restate one of the more salient featires of
non-parametric tests and that is the fact that they do not depend upon
sometimes un.'ealistic distribution assumptions, such as the normality
of error distribution and that in many cases they are more readily com-
prehended and their test statistics more easily computed by a broader
spectrum of statisticians and researchers.

Friedmen in 1937 introduced a test which is sometimes referred to
as the two-way analysis of variance by ranks. The method is outlined
in detail in Conover (ref 1, pp 264-274]; the teat is considered to be
the non-parametric version of the familiar parametric two-way analysis
of variance (ANOVA). The parametric ANOVA is the usual way of testing
the hypothesis of no treatment differences. For experiments of the ran-
domized block design, and where there is one observation per block, the
Friedman test is used as a non.narametric method to test this same hypo-
thesis.

The subject of this paper is related to an extension• of the Friedman **
test to the case of several observations per block, given in Conover
Iref 1, p 273). The example given in the next section will illustrate
the use of this extension, The data come from unpublished lecture
notes of reference 4.

2. EXAMPLE.

The hypothetical data of Table Il] represent scores on a reading
test given to seventh grade students following one, three, or five weekly
20 minute training periods on an electric talking typewriter programed
to teach reading skills. The study was conducted across four different
schools, drawing from different social strata in the community and
taught by four different sets of teachers in four different claqsroomr
environments.
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Table [11 $core$ on a R~eading Teot Foll.owing One# Threet or Five Weekly

110 82 1i8
87 84 96
*79 74 104

_________ 102 70 126

L 41 9311
76 76 76
43 91 91

74 10105

C56 102 83
5o 40 72
64 39 so

_____________ 61 62 105

D67 6a 126
60 87 101
so 69 126

The data of Table 1 are ranked within each block, Theme rankings
appears in Table 2. The sm~ of ranks Rjare also given.

Table 2 observations Ranked Within Blocks and the Sum of Ranks.

H .oo -1

3 29

2 10 12
6 6 A

3 8.5 8.5

Table continued on~ following page
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Sessions per Week

: 'School 3:

4 11 10
3•2

7- 112

D 4 5 11
2 9
1 6 12

__- ob�__e_�_e7 3 10

Rl 77 R280-5 R3  154.5

4 The expected value of Ri is given by:

S(4) -.4- 1  i I) (43)(4[4)

2 

1
'104

where b a # blocks (schools)
k a # treatments (usessions per week)
m a # observations per cell

The Friedman test statistic in given by

12 k

T E 12 -EMPn2  (2)
12 2

E (l~j-1041
(4) (3) (16) (13) jul

12 127+2+3.,52+50.5
(12) (208)

1 1L 729+552,23+2350.253
.4 208

208I
Z18.4
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, 'lThe distribution of T4 can be approximated by the chi-square distribution

with k-1 degrees of freedom, For this exanple k-l2 and X2 (2), a .49

,.Thus, we would roet a null hypothesis of no treatment differences.
S~~3. P•ROLEM, -

In the preceding section, the results of t.he extension of the Fried-
maln test to the case of several observations indioato that significant
differences between the three treatments exist at the C a .05 level, ASnatural question arises, i.e., which treatments differ significentl¥ ,;,

in a statistical sense? No post-hoc pairwise comparison procedures
are given in Conover for this extension. Also, Hollander and Wolfe (1973)
do not address this problem. A possible solution lies in extending
. theorem given by Marascuilo and McSweeney (1967) which is given in
the nexte section.

;:'I ke., where k l

sider the aet of all possible linear contrasts of the form •, Lot

be an estimate of ý with estimated variance given by
A k k~ A A

Var (W) -E a, Var (ek) +2 E E ai a "p' cov (eiaei,) (4)

Then in the limit the probability is l-a that simultaneously for all
linear contrasts of the form

The reader will note that this theorem is a chi-square analog to the
more familiar Scheffer theorem.

The proof of this theorem may be obtained from Marasouilo and McSweeney
(reference 3) upon request.

5. LM. ShAT _N OF THN T 3Oi_. Let Ri be the sum of the ranks an in
mtseion e , Let

iuajej + 4a26 + . . kek
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be a linear contrast with estimate

- • a + + + ak Pk (6)

The variance of the contrast wi•l. be dets.mined two ways: assuming• ne-
pendence between treatment observations ieCc ~ 01 and the•e a
,asn where the asuaumption of independenae cannot be justified [i.e•, COy

a. If Coy (ei, Oil) 0o-4
AA

Var Var CR1) + a Var (R 2 ) + , a Var (R

L

Where Var (Ri) is given in Conover (p. 273).

/~a- r T) a m-M ~ kA1 (k1) Ea (7)

b1 b. Zf Cov (e, 8i 0 0

• ' " r- -m ÷ + Eai (--

Now

R* - - Rl a 77-80.5. -3.5

A * R1 . R3 m 77-154.5 a -77,5

sk i R- - a 80.5-154.5 -74
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• J are the possible pairwise comparisons and their estimated values from
our original example. in ord.ir to test tnese values for significance,
we apply the Marascuilo - McSweeney theorem and compute the critical
differences.

CD ((9)k-l)

a. if Coy (Bi' 8,A) 0 0

CD -* g 42-77.33

a (2.45) (16.65)

-40.79

0%A

b. if Ccv (Bit oil) 0

CD - 5 31

- (2.45) (17.66)

- 43.28

Any contrast which has an absolute value greater than CD is a statisti-
cally significant contrast. Thus, at the a - .05 level of significance,

S*2 and J are significant contrasts. Therefore, in relationship to
our example, it would appear that five sessions per week are necessary
to increase the test scores and improve reading skills. This conclusion
is consistent with thA findinos of thp mxanale source (reference 4).
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ESTIMATE OF RELIABILITY IN THE

STRESS-STRENGTH MODEL

Asit P. Basu
University of Missouri-Columbia

ABSTRACT.

Suppose Y is the strength of a component which is subject to a

stress X. Then the component fails whenever X k Y, and there is

no failure when X < Y. In this paper the problem of estimating the

reliability function

R- P(X < Y)

is considered. A survey of available results is presented and some

new results are considered.

!I
El-

*Research supported by Army Research Office under Grant No. DM 29-76-
0-0301 and by the Air Force Office of Scientific Research under
GtantNo. AFOSR-7S-2795B.
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INTRODUCTION

Lot X and Y be two random variables with cumulativn distri-

bution functions F(x) aiid G(y) respectively. Suppose Y is the

strength of a component subject to a stress X. Then the component

fails if at any moment the applied stress (or load) is greater than

its strength or resistance. The stress is a function of the environ-

ment to which the component is subjected, and its value at any point

of time is considered a random variable. The strength of a component

is measured by the stress required to failure. Strength depends on

material properties, manufacturing procedures and so on. If the com-

ponents under question are mass produced and their selection in a

given system is assumed to be made at random, then the strength should

also be considered a random variable. The reliability of a component

during a given period [O,T] is taken to be the probability that its

strength exceeds the stress during the entire interval, that is, the

reliability function R is given by

R P(X < Y)

From practical considerations it is desirable to draw inference about

the reliability function. The problem 6f estimating R has been con-

sidered by many using nonparametric, Bayesian and parametric approach.
• We shall present a survey of available results and consider some now,

S•..•.... •; results,

The above model was first considered by Birnbaum (1956) and has

since found an increasing number of applications in many different
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T &areas, especially in the structural and aircraft industries.

As an example, consider the 'following problem discussed by

Lloyd and Lipow (1962). A solid propellant rocket engineis succ(-e,

fully fired provided the chamber pressure (X) generated by igniti•r,

stays below the burst pressure (Y) -of the rocket chamber. If

X a Y, the engine blows up and the operation is a failure.

Note the problem of inference about R - P(X t Y) is similar to

the problem of estimation of P - P(X i Y),p the probability of fail-

ure. So one can either talk of R, or of P.

2. Nonparamotricaproach

Let (XlI X21...,X and (YY) be two independent

samples of measurements o• X and Y respectively. Let

.*(Xi y) i
o, Otherwise

then
m n

U. X E *(Xj, Yj)
Jil ja i

is the well known two sample Mann-Whitney statistic, that is

U u number of pairs (Xi, Yj) such that

Birnbaum (1956) showed that the Mann-Whitney statistic U could be

used to estimate 1 - R (Probability of failure), and hence R,

particular
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-w

•- -i-f Lmn (2.1)4"1
was proposed as an estimator of P - Pr (failure), and it was used

to obtain one sided confidence interval for P for the casos F

known, G unknown (m * -), and both P and G unknown. Birnbaum

and McCarty (1958) considered a numerical procedure for computing

the sample sizes needed for the confidence interval based on U/mn,

Owen, Craswell and Hanson (1964) showed that the assumption of

continuity required in Birnbaum (1956) was not essential and produced

"some tables for use in computing sample sized and confidence intervals

for the Birnbaum-McCarty procedure.

Govindarajulu (1968) also has explicitly derived one sided and

two sided distribution free confidence bounds for P based on the

asymptotic normality of * U/mn. This bounds are approximately

one half of the corresponding bounds due to Birnbaum and McCarty

(1958). In particular, Covinderajulu showed that for all F and G and

large m or n, the solution * of the equations

P( C). PQ 6) , < Y 1

is given by

k (4 v)01/2 -1

and the solution of the equation

PCI -P1 k £)~y, 0 < y <
100
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is given by

-1/2 1 +' ,--

tip (4 v) *

SHere i

and 0'1(@) is the inverse function of 4(.).

Recently Govindarajulu (1974) has also considered a sequential dis-

tribution-free procedure for obtaining fixed-width confidence limits

for P. (and hence for R). However, in the absence of additional

numerical computation, it is not known hay good is the performance

of this sequential procedure,

3'. Bayesian Aproach

Not much has been done from the Bayesian point of view

,nis and Geisser (1971) investigated Bayesian approach for estimating

R assuming X and Y to be independently distribut6d and that X and

Y are either exponentially distributed or normally distributed,

4. Parametric Approach

In many situations, the distribution of X or (of both X and Y.)

"will be known, and it is desired to obtain parametric solutions.

Thus, in case of missile flights, the stress may be expensive to

sample, but the physical characteristics of the missile system, such

as the propulaive force, angle of elevation, changes in atmospheric

condition, and so on may all have known distributions; consequently,
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the distribution of stresses may be calculated. In this section$ we

shall consider the problem of estimating R (or P) 'for specific pars-

metric distributions.

I4.1 UorMal- 2igtribution: Owen, Crauwell and Hanson (1964) considered,

above problem and gave one sided confidence intervals9 for R when

both Wtrss and strength are (a) jointly bivariate normally distribut-

Pe0nra ihacmo nnw vrac. Nt fXadYflo
ed anA observations are in pairs, 6T (b) when X and Y are indepen- 1

a joint bivariate distribution

*R P(X < Y) *P(Y -X 0)

22 2

and A. 7-X/(a, -2 P3 t ) 0

i a xis a and p are known. Similarly if X and Y are independent

P(X 4 Y) I" F'(x) dG(x').

SAMe Problems have been considered by Govidarajulu (1976), who obtain-

*ed two sided confidence intervals for R. Church and Harris (1970)

have also considered the same problems under the assumption that5. X

and Y are independent, normally distributed and the distribution of

and Var(X)-l. In this case,

R- P(X Y)



whe:re P E (Y) and 02 .E(y- )2 'Church and Harri.s considerod

whr land .2 (Y 7/( 1),. from Which they

.1obtained the following confidence interval for A.,

(1O -(I ev) it < 0 (V +. 0~~ (3.

aSimila&ily, a one sided conrfidence interval is given by

P{ ot 0 (V - 0 .2 (1 -Y ~)"Y,

Here

*2 -232
+ . 2 2

2(n + l)(

The confidence interval obtained by Church and Harris compare

favorably with that Of GovindaTajulU (1968). Their procedure, &I-

though empirically demonstrated to be superior to that of Govindarajulu

is, however, inexact since it uses the asymptotic normal approxima%

tion of a given statistic and requires the substitution of the popu-

lotion mean and standard deviations by their observed sample values.

In fact, all the parametric estimators suffer from same weakness as



they are based on maximum likelihood estimators. Mazumdar (1970),

has considered the same problem of obtaining point and interval

estimates of reliability and obtained mvue of reliability usingj interference theory. Minimum variance unbiased estimator of R~ in

the normal case has also been considered by Downton (1973).

ff,

4.2 gaimma and ~Exonentlill dist¶'ibutIgn: Since in many physical

-situations, specially in reliability and life testing problems, ex-

ponential and gamma distributions provide more realistic models,

it is desirable to obtain estimators of R in these cases.

Let X and Y be independently distributed with density func-

tionsa

I P-1
rr(Pj*P

rq) 0 rci~ t

ks" r( ) (1p()] kdF4) C+)
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Here p and q are assumed to be known integers. If two independent
random samples CXIX ,...Xm) and (Y',Y 2 ... Yn)from the two gamma

9 populations are available mle of. and 0 are given by *^-P and

K AN. Hence nile of R isq

knO rCP;rvkCl)c8+SCa

As special cases, if, q-l, that is if X follows the gamma distri-

bution and Y follows the exponential distribution

IR R .( €/(84÷}P

Finally, if both p and q are equal to 1, we have the case of two

independent exponential distributions and we have

*R
oa

The, distribution of A, for large m and n, can be shown to be

normal and hence asymptotic confidence interval for can be ob-

tained.

Tong '(1974, 1975) has obtained mvube of R for gamma and ox-,

ponential distributions. The variance of the muvbe of R, in the

exponential case has been derived by Kelley- et al (1976)

4.3 Weibull distribution: Let X and Y be independent random

variables each followiing the Weibull distribution with common shape

; ... 105



parameter 6. That is let

F(x) - O -eX,/Ct a>

G(y) i- e'Y/B 0 , y > 0.

We can readily see

R p(x y6 ) < P(X< Y) -

Note above is independent of 8. Againj,we can obtain the Inle

of R to be

R -/ce , B

where V'and S are mie of a and B.

4.4 jivariate exponential.distribution: Since exponential distri-

bution is considered a useful model in life testing problems, it is

desirable to consider bivariate analogue of univariate exponential

distributions which will have properties similar to the univariate

exponential distribution. Marshall and Olkn (1967) have proposed *
a very important bivariate exponential distribution (BVE), which

is given by

.F~x,y)=P(X>rY>y),,e )1x )2y 'Iax(xy),Ol,•2,),2<-,Xl÷ i2)O,,2÷,2>O(X>Oy>O),1

•,, /",'10



The BVE does arise in several natural ways and its properties ap-

pear to be fundamental. In particular, marginal distributions of

flVE are exponential and BVE has the loss of memory property (LMP)

given b

F(x xt,y+t) -F(xjy)F(t,t) for e s 2 ,.t•O

However, this.distribution is not absolutely continuous and there

are clearly situations when it can not be applied. Thus, from data,

it is found that XOY for any p~air (X,Y) the model is clearly

not applicable. An alternative absolutely continuuus distribution

related to the BVE and haVPng some of its properties would appear

to be of interest. To this end, Block and Basu (1974) have proposod

an absolutely continuous bivariate exponential extension (ACBVE),

which turns out to be the absolutely continuous part of the BVE of

Marshall and Olkin. ACBVB is also seen to be a variant of the

distribution Freund (1961). The ACBVE is given by

".,~I '(X BY) I 2yx['~ -Xl27- max(x,,y)]

22. expC-Xlmax(x,y)] for xý-O,yoo.

Here

"1 + X2+ 12.
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Estimates of R when the underlying distribution is BVE or

ACBV3 has been obtained by Basu (1976). These results wilt'be com-

S. Reliability of complex systems_

The model described before can be extended'to more complex sys-

tems. For example, a single component system of strength Y could

be subjected to k different independent stresses -Xl.X2, Xk.

Here reliability of the system is given by

R * P(X 4Y, X2 Y, ... ,Xk Y)

R • P(max(XX 2 , ... ,Xk) < Y

An example of interest is the case where a beam with strength Y is

subjected to several stresses X1,X 2 , .,, ,Xk. Another similar pro-

blem of interest is to evaluate the reliability function R' of a

k-component system of strengths Y19y2. " Y respectively

each of which is subject to a common stress X. Here

R =. PlX<Yll X<Y2, ... ,XYk)

SP{X<min (Y1, '" 3 k ,

As an example, the flow of a 'urrent X througIJ an electronic com-

ponent assembled from several subcomponents with abilities to accom-

* modate currents YY " Y would follow this pattern.
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Chandra (1975) has considered the problem of estimating R and

RI under the assumption that the X's and Y's are all independent

random variables and (a) all follow normal distributions, (b) Y's

are all exponential and X is normal with known variance,

Bhattacharyya and Johnson (1974) considered the problem of

estimating reliability function R for a more complex m-out-of-k

system. Here each of m components of a system of strengths Y1,

Y2 is subjected to a stress X and the system survives if

at least t out of the k corponents survive. Assuming XY1 , .. yk

to be independent with distribution functions P(x), 0 (yl") G2 (y 2 ),

.,Gk(yk). Bhattacharyya and Johnson considered the problem of

estimating the reliability function RUPr(at least m of the Y1, $alprI
Yk exceed X), under the assumption G3MG 22..MGkaG, usa• and that P

and G are exponential distributions with known scale parameters.
Here

kt

R .(k ad [(-x)lC x) CP(x))

Bhattacharyya and Johnson (1973) have also considered a nonparametric

approach for the above problem.

The author is currently investigating additional problems in

this area results of which will be communicated elsewhere.
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UNDERLYING PROBABILITY DISTRIBUTION
OF GUN TUBE FATIGUE LIFE

Ronald L. Racicot
Applied Mathematics and Mechanics Division

Benet Weapons Laboratory
Watervliet Arsenal

Watervliet, New York

ABSTRACT. The fracture mechanics studies of gun tube fatigue
conducte- =s far are essentially deterministic. That is, crack
growth and failure are described exactly by assuming that all pertinent
parameters are known. Much information has been gained by this
approach in studying the important parameters that affect fatigue life.
Fatigue life, however, is known to be a random variable. The proba-
bilistic nature of fatigue life must, therefore, be taken into account
in the development of gun tubes.

The development approach used at the present time is to schedule
gun barrel replacement early enough to forestall failure during firing.
Since fatigue life is a random variable, this is accomplished by
statistically determining a "safe life" from fatigue test results on a
small number of tubes.

In this paper, a probabilistic approach starting with existing
theories of fracture mechanics is used to determine the best fit theo- I
retical distribution of life. The main purpose is to improve the
present statistical methods for determing safe life by providing a
basis for choosing a distribution in analyzing small sample data. The
approach used is to assume that the material properties and design I
parameters in crack growth and failure laws are random variables.
Fatigue life is then given as a function of a number of random variables.
The fatigue test results for the 105mm M137A1 and 175,n M113EI tubes
are used as bases to estimate means and variances of the model para-
meters. Monte Carol simulation studies are then conducted by assuming
various probability distributions for the model parameters and computing
the statistics of the distribution of fatigue lives. Results of the
Monte Carlo studies indicate that the best-fit theoretical distributions
of fatigue life are the 2- and 3-parameter log-normal.

1. INTRODUCTION. The general problem considered is the fatigue
failure of gun tubes resulting from repetitive firing pressure cycles.
Numerous studies have been performed at the Watervliet Arsenal and
elsewhere on fatigue crack growth and failure of gun tubes [1-121].
These studies include both theoretical fracture mechanics which relate
material properties and design parameters to crack growth and exper-
imental measurement on actual gun tubes of crack depth versus number of
cycles.
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The fracture mechanics studies conducted thus far are essentially
deterministic. That is, crack growth and failure are described exactly
by assuming that all pertinent parameters are known. Empirical methods
are used to estimate some of the model parameters. Much information
has been gained by this approach in studying the important parameters
that Affect fatigue life [10-12]. Fatigue life, however, is known to
be a random variable. The probabilistic nature of fatigue life must,
therefore$ be taken into account in the development of gun tubes.

Ji• The development approach used at the present time is to schedule
gun barrel replacement early enough to forestall failure during firing.
Since fatigue life is a random variable, this is accomplished by
statistically determining a "safe life" from fatigue test results on a
small number of tubes [4-6,13,14]. The safe life is a statistical
"tolerance limit [15] for fatigue life for which current specifications
require at least a 0.999 probability that tubes will survive thespecified safe life. This is determined by first assuming a theoretical
distribution of fatigue life and then statistically computing the 0.999
tolerance limit at 90% confidence from a six tube test. The main draw-
back of this approach is the lack of justification for choosing the
theoretical distribution. In the past the 3-parameter Weibull has been
arbitrarily assumed [4-6,13].

In this paper, a probabilistic approach starting with existing
theories of fracture mechanics is used to determine the best fit theo-retical distribution of life. The main purpose is to improve the
present statistical methods for determing safe life by providing a
basis for choosing a distribution in analyzing small sample data.

The approach used here is to assume that the material properties
and design parameters in crack growth and failure laws are random
variables. Fatigue life is then given as a function of a number of
random variables. The fatigue test results for the 105mm M137A1 and
175mm M113B1 tubes (4,S] are used as bases to estimate means and
variances of the model parameters. Monte Carlo simulation studies are
then conducted by assuming various probability distributions for the
model parameters and computing the statistics of the distribution of
fatigue lives [16, p. 124].

2. PROBABILISTIC MODEL BASED ON FRACTURE MECHANICS. There are
essentially three phases in the fatigue failure of gun tubes: 1) initi-
ation of cracks; 2) stable crack growth; and 3) failure through unstable
crack growth or perforation of the tube surface. Initiation of cracks
occurs very early in the life of a tube due primarily to the heat
effects of firing the first few rounds [5,1l0. The main phenomena in
tube fatigue, therefore, are crack growth and failure.
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The theories of fracture mechanics for fatigue of tubes are well
covered in the literature and Army reports, so only the final results
are summarized here (see t11] and references listed in this paper).
The crack growth model used in this study is based on the Paris [17]
expression for rate of crack growth and on analyses and experimental
results of Throop (12], Throop and Miller [11), and others [1-10].
The rate of crack growth is approximated by the expression

bdN

in which b a crack depth
N a number of cycles
AK a range of variation of stress intensity factor K

for one cycle (see [183 for discussion of stress
intensity factor)

m a empirical parameter dependent on material and
stress intensity

M m empirical parameter dependent on materialproperties.

In the Throop model [12], a value of m equal to 3.0 gives an
adequate overall fit to tube fatigue data although m is known to vary
from specimen-to-specimen and for different tube designs. The vari-
ables AK and M in this model are given as

AK (%SrV (2)

M EK a /C (3)

in which S a maximum hoop stress at the bore of the tube,a =( Pw+l)/(Wa-1); P - internal pressures W
S: OD./I.D.

a:• empirical parameter which depends on Crack shape..
: and residual stresses. Compressive residual
•i• ~stresses at the bore of the tube are introduced ,

using the autofrettage process [19,20].•i ER Yourg's modulus ;

KIC fracture toughness for a crack in a tangentialstress field. KI is the value of stress intensity

K at which unstable crack growth begins.
yield strength
empirical parameter which varies with m to maintain
dimensional homogeneity and may be a function cf

4 other material properties.
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Substituting (2) and (3) into kl) gives

"db C m4)

dN. Ea Ki
in the probability model, the exponent m is allowed to be a random
variable with the mean being determined empirically. The variables

* E, ay, KIC, a and S are random variables.

All of the parameters in (4) can statistically vary from cycle-
to-cycle, as a function of crack depth and for different cracks within
a given tube. Depth measurements of the largest crack versus number
of cycles as well as results of probabilistic studies indicate, however,
that the greatest sources of fatigue life variability stem from tube-to-
tube variability in the controlling crack growth parameters. Fatigue
crack growth in a given tube, therefore, is essentially deterministic
in comparison to tube-to-tube variability. The problem then reduces
to integrating (4) assuming that material and tube parameters remain
constant within a given tube:

1

NE N-Ni 0 C(Ss -mm2) (bi -b )

for m 0 2 CS)

= SayKIC ln(b/bi)

S(asit 
form - 2

,)in which bi a initial crack depth which depends on the heat

affected zone and residual stresses.
Nt - initial number of cycles yielding bi.

In (), Ni is relatively small and can be assumed zero. The initial
"crack depth bi is assumed to be a random variable.

Failure occurs when the crack depth b is either equal to the tube
wall thickness B or equal to the critical depth at which unstable growth
begins. Unstable crack growth in tubes occurs when

A I
bc N - (-) (6)

in which bc a critical crack depth
A a empirical constant which accounts for differences

in crack shape in the tube and in the specimens
used to determine KIC.

Finally, fatigue life NE is equal to (N-Ni) in (5) where b min
CB,bc).
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3. LEVELS OF VARIABILITY OF MATERIAL PROPERTIES AND DESIGN
PARAMETERS. Equation (5) is a model of fatigue life given as a
funtionf random material and design parameters. The theoretical
forWs of the distributions of the different model parameters are
unknown. The normal, lognormal and Weibull distributions [21] were
consequently assumed for the model parameters in studying the form
of the distribution of Nf. For these distributions, the mean and
variance of each parameter are sufficient to fully characterize the
random variables.

Available test data for the 105mm M137A1 and 175mm Mll3El tubes
were used as bases to estimate means and variances of the model para-
meters. Once the model parameters are characterized in a probabilistic
sense, sensitivity studies can be performed to determine important
factors that influence the statistics of Nf.

a. 105mm M137A1 Tube Data. Table I lists fatigue life and
property data for nine 10$mm tubes [4]. The fracture toughness was
not measured for these tubes and had to be estimated from the yield
strength and critical crack depth data using (6) and an empirical
relationship for cy versus KIC 122). In addition to this data,
crack depth versus number of cycles data were measured on these tubes.
The model parameters m, a, and bi were estimated from this data by
fitting the model (5) to the data. Figure 1 shows a comparison of the
model to the data for some of the tubes.

TABLE I: FATIGUE AND PROPERTY DATA FOR I05MI •
MM TQBE91

" Tube Fatigue Life, bc, cr KIC 2
S_'O. Rounds + Cycles in _s ksi¢' a

No. s

59421 16798 0.80 196 90 .777
59071 12576 0.80 190 99 .851
58046 12469 1.07 171 116 .864
59906 12162 0.60 189 85 .841
62103 10971 0.85 192 107 .891
"59895 10801 0.80 187 104 .892
59527 10397 1.05 204 121 .910
59239 9503 0.70 187 100 .921
59531 8882 0.75 207 106 .944

(1) Estimates using equation (6) and O w 334 - 1.39KIC [22].
(2) Estimates from crack depth vs. cycles data. I
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Table I1 is a summary of the means and standard deviations of the
modol parameters either estimated from the 105mm tube data or assumed
if no data was available.

TABLE IXI: SUMMARY OF MEANS AND STANDARD DEVIATIONS
OF MODEL PARAMETERS FOR 105MM TUBES

Standard
Parameter Meon . Devkation (I)

Do, Outside diam,, in 6.85 0.0 A
Di, Inside diam., in 4.21 0.0 A
P, Max. Pressure, ksi 42 0.0 A
a, Crack shape-residual stress

parameter 0.877 0.050 B
KIC, Fracture toughness, ksiW 103 11.5 E
vy, Yield strength, ksi 191 a a 334 - 1.39KIC
bi, Initial crack depth, in 0.02 0.001 A
m, Rate exponent 3.5 0.1 A
E, Young's Modulus, ksi 30,000 300 A
A, Critical crack depth constant 1.604 0.0 A
C, Empirical constant 0.0333 .0.0 A

(1) E E Estimated; A 2 Assumed

b. 175mm MI13E1 Tube Data. Table III summarizes the fatigue and
property Ma either measuredor estimated from tests on four 175mm
tubes [5]. Figure 2 is a comparison of the model to the crack depth
versus cycles data for these tubes. The means and standard deviations
estimated from data or assumed for the model parameters are summarized
in Table IV.

TABLE III: PATIGUE AND PROPERTY DATA FOR 17SMM M11l3B TUBES

Tube Fatigue Life, b a, K, KIC( 1 ) (2)
No. Rounds + Cycles in k~l ksi ME k. a 145na

4134 10974 > 3.98 156 130 152 .900
4133 12313 2.40 169 ill; 11.5 .874
4127 15255 > 3.98 151 124 139 .8194130 16201 > 3.98 153 135 136 .805

(1) KIC was adjusted to account for bc e 2.40 for tube 4133 by
applying equation (6). Kq is an estimate of KIC using a
nonstandard specimen.

(2) Estimates from crack depth versus cycles data.
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TABLE IV: SUMMARY OF MEANS AND STANDARD DEVIATIONS OF
MODEL PARAMETERS FOR 17SM TUBES

Parameter,
(See Table 1I Standard
for Definitions) Mean DeviationCl)_

D O15.0 0.0 A
Di 7,04 0,0 A
P 46 0.0(2) A

.840S 0.045 E
KIC 135.5 13.3 E
a (0146 a, a 334 - 1.39KIC
b(3 0:06 0:005 A
E 30000 300 A
A 2.26 0.0 A
C 0.2413 0.0 A

(1) E Estimated; A E Assumed
(2) Tube-to-tube variation assumed zero; however,

cycle-to-cycle standard deviation ; 0.90 from
( 23]. 4

(3) ay was computed from the equation given. This
resulted in a somewhat lower value than the measured
values given in Table I11. The computed a is still
within the required specifications of 140-T60 ksi.

4. BEST PIT PROBABILITY DISTRIBUTION OF FATIGUE LIVES. In this
section, the model expressed by equation !1) Is used to generate prob-
ability distributional information for fatigue lives of tubes. This
is accomplished by first assuming probability distributions for the
model parameters and then using Monte Carlo simulation to generate
the fatigue life distribution. The simulation trials were conducted
as follows:

a. The general form of the distribution for the model parameters
is fixed. A choice of one of three possible distributions is used;
normal, lognormal or Weibull.

b. The mean and standard deviation for each parameter is fixed

using the test results and assumptions given in Section 3 as bases.
It should be noted that the 105mm and 175mm tube data are used only
to provide a starting point for conducting the Monte Carlo trials.

c. A value for each of the random model parameters is generated
using random numbern (16, p. 1241.

d. The fatigue life for the given sot of parameters is computed
using (5) and (6).
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e. Steps c) and d) are repeated 3 times (usually 1,000 to 10,000)
yielding J different values of fatigue failure times.

f. Various distributional statistics are computed from the J
failure times; eg, mean, variance, coefficients of skewness and
kurtosis [16, p. 146], 99.0 and 99.9 lower percentiles, and the K-S
(Kolmogorov-Smirnov) statistic (16, p. 466),

Steps a) through f) can be repeated for different model parameter
distributions, different values of parameter means and standard
deviation&, different failure criteria, etc.

A number of candidate theoretical distributions were considered
for fatigue life; normal, 2- and 3-parameter lognormal, 2- and 3-pars-
meter Weibull and gamma [16,21]. A comparison was made of the various
theoretical distributions to the Monte Carlo model distribution. This
was done by first fitting the theoretical distribution to the model
distribution by equating means and variances. The third parameter inthe S-parameter distributions were fixed by equating the gg.g lower '

percentile of the theoretical and model distributions. The reason for
this was to match as closely as possible the lower tails of the
distributions for comparative purposes. Goodness of fit was then
checked using the K-S statistic and by comparing the coefficientsof skewness and kurtosis Cthtrd and fourth moments) and the 99.0 and
99.9 luwer percentiles.

The K-S statistic is a measure of tht. maximum deviation of a
theoretical cumulative distribution from a set of data; the lower the
K-S statistic, the better the fit. The data in this case are the Monte
Carlo failure times. Table V lists the K-S statistics for the various
theoretical distributions as a function of parameter distribution anddata bases.

TABLE V: K-S STATISTIC FOR COMPARING MODEL WITH
VARIOUS THEORETICALEDISTRIBUTIONS

"K-S Statistic*

105mm M137A1 Tubes 175mm M113BI Tubes
Failure Time Parameter Distribution Parameter Distribution
Distribution Normal tognormal Weibul?' Normal Logormal Weibull

Normal .068 ,061 .120 ,050 .040 .109
2-p Weibull .084 .078 .135 .082 .073 .136
3-p Weibull .081 .073 .299 .143 .138 .330
2-p Lognormal .029 .022 .075 .019 .010 .073
3-p Lognormal .021 .023 .046 .014 .010 .036
Gamma .041 .034 .090 .029 .019 .085

*Only 1,000 Montu Carlo trials were used in this case to reduce excessive
computer time.
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It should be noted that the distributions of the material and design
parameters in equation (S) are not known. Different distvibutions-
were consequently assumed to indicate the importanc6 of this factor,
if any, on conclusions made about the failure time distribution. The
K-S statistics given in Table V indicate that the-2- and 3-parameter
lognormal provide the best overall fit to the model for the different

parameter distributions considered.

An explanation is required for why the K-S statistic in Table V
increased in some cases for the 3-parameter distribution in comparison
to the 2-parameter distribution. Generally, one would expect a better
fit when the number of distribution parameters is increased. This
would be true if the 3rd parameter was chosen to minimize the K-S
statistic. However, in the gun fatigue problem the main concern is
estimating probabilities at the lower tails of the distributions.
The third distribution parameter was consequently chosen by equating
a given lower percentile. This resulted in a worse fit at the upper
tail for some of the cases considered, particularly for the 3-parameter
Weibull distribution, resulting in a higher K-S statistic.

In light of the above discussion, it is of interest to compare other
goodness-of-fit statistics which would indicate behavior at the lower
tails. Table VT lists the coefficients of skewness and kurtosis and
the 99.0 and 99.9 lower percentiles for the model and theoretical
distributions. The parameter distributions were assumed normal for I
these particular results with 10,000 Monte Carlo trials run for each
case. Again, the lognormal, particularly the 3-parameter lognormal,
yielded the best overall fit to the model statistics, Compare, for
example, the 99.0 percentiles of the assumed failure time distributions
to the model value.

TABLE VI: COMPARISON OF SIMULATED MODEL DISTRIB8UTION :

Coefficients of Lower Percentile

Pailure Skewness Kurtosis 99.0 99.9*
Time 10m P 15mm E 17 105mm T17ST 1 im T! mm
Dist, Tubes Tubes Tubes Tubes Tubes Tubes Tubes Tubes

Normal 0.0 0.0 3.00 3.00 $589 7891 3S98 5977

2-p Weibull -0.27 -0.41 2,90 3.11 5171 7181 3298 5007
3-p Weibull 0.37 0.26 2.87 2.78 6688 8707 6050 7954
2-p Lognormal 0.68 0.55 3.84 3.55 6802 8857 5745 7712
3-p Lognormal 0,i1 0.65 4.18 3.75 6992 9003 6050 7954
Gamma 0.45 0.37 3.30 3.20 6456 8571 5218 7256
Model 0.86 0.76 4.45 3,97 6996 9154 60S0 7954

*The third parameter for the 3-p distributions was chosen such that the
99.9 percentile was equal to the model results.
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There is theoretical justification for why the lognormal could be
expected to provide a representation of the fatigue life distribution,
The model (5) gives fatigue life as a product of random variables. The
limiting distribution for the product of an infinite number of random
variables is the lognormal regardless of the fotth of the distribution
of the individual random variables [16, p. 262]. In practice the
actual number of random variables required to give a lognormal depends
on a number of factors including the form of the distribution of the
individual random variables as well as accuracy required for the
distribution which is to represent the product. For example, if each
random variable in the product is itself lognormal then the product
is always lognormul regardless of the number of random variables. It
appears that even though equation (5) represents the product of at

¾.' most seven random variables, this is apparently enough to give a trend
toward lognormal as indicated by the results.

S. FUTURE RESEARCH EFFORTS. The results reported in this paper
w ere based on the particular' fracture mechanics model given by equation
(5). As additional experimental results are obtained this model may
be revised as well as the values of the model parameters and their
variances. The effect on life distribution must be rechecked in this
instance. I

In any case, a number of interesting studies may be pursued usingthe developed probabilistic model:

a. determine the relative effects of variabiltty in design and
material parameters on the variability of fatigue life;

b. study possible methods of increasing safe life through control
of statistical parameters;

c. study different methods of computing safe life; and

d. improve the initial design approach for new gun tubes,
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ESTIMATION AND EFFECT OF NOISE CORRELATION
ON VARIANCE ESTIMATION FROM MOVING ARC SMOOTHING

Paul H. Thrasher
Quality Assur•ance Office

hUS ite Whin . Sands Missile Range
White Sands Missile Range, New Mexico f

ABSTRACT. Correlation in the noise on Y, in measurements of Y versus X
with X -asumd exact, does not formally effect the moving ame least-squares
estimate of Y, *It does, however, effect the variance estimate of Y. Analysis
"has been done to find correction factors to the zero comTelation estimates of
(1) the mo~ving arc smoothing factor and (2) the degrees of freedom in the
relation

[Variance the movingEVY 1smoothing Sfar Factore
sVarianc Estne hd-Data) Degrees of Freedom '

}Both correction factors depend on the correlation matrix. An algorithm has
been devised to estimate the correlation matrix by assuming First Order Markov
correlation. Problems with the application of the theory ars discussed and
possible modifications are suggested.

1. INTRODUCTION. In many physical measurements of related quantities X
and Y, two conditions exist. First, the independent variable X can be measured
so much more accurately than the dependent variable Y that X can be assumed
exact. Second, the man and/or machine system which measures Y introduces
correlated noise. In one example, the tracking of missiles, X is tire and Y IS1 is positiolt.

The statistical analysis may be complicated by a lack of knowledge about
the physical model describing the data. One approach to this dilemna is to do
a least-squares fit of a polynomial to a smoothing span of N data points in
order to find a "smoothed" value for the middle point i. To analyze the (i+l)th
point, the smoothing span must be shifted one po nt forward in X and the least-
squares analysis must be repeated. In the exanple of missile tracking, a
quadratic polynomial fits a highly restricted physical situation. The quadratic
description is rendered invalid by such factors as air resistence, changing
rocket thrusts, and stage separation. Since the correct physical description
is unknown, however, the quadratic polynomial is normally used. J

The theory presented below is based on a polynomial model of deoge n.
Three sections aem devoted to the theory.

First, an algebraic derivation yields values of (a) snoothed positions
and corTerponding derivatives dms /dXm, (b) estimates of variances of

d'YSi /dC'* when the noise correlation is not considered, and (c) correction
factors to these variance estimates in order to take correlation into account.
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These correction factors are functions of the correlation coefficients and
the number of degrees of freedom in the smoothing span.

The second theory section is a matrix derivation which obtains (a) an
alternate expression for the polynomial obtained used in the first section and
(b) the relation between the number of degrees of freedom and the corelation
matrix.

The third section estimates the correlation coefficient in the corelation
matrix by using a First Order Mazkov approattion.

The fourth section reports on difficulties encotmtered in applying the
theory to (a) the output of a white noise generator that has had First Or-der
S Makov correlation introduced into it and (b) actual missile tracking data.
The basic problem is that the results appear to depend on analysis variables
which have no physical influence on the correlation present.

A bribf fifth section lists the primaxry cause of the difficulty and
possible corrective procedures. This informtlon was provided by the panel"at the presentation of this problem to the Twanty-Second Conference on theDesign of Experiztents in Army Research, Development, and Testing.

2. ALGEBRAIC RELATION BMWMJ VARIANCE ESTIMTES FOR IGNORING AND
CONSIDERING MWMFLTION.

This section discusses the effect on the covariance of masurements,
O0V(Yi+jYi+J10) •p(ij,•`,w,s) VAR(Y i) 2

on the variance of a least-squarem polynomial. If the data's correlation is
either non-existent or Ignored, the correlation coefficient, p (i,j ,j` ,w,s),
is set equal to .. , In general, however, the masuring device's bandwidth

and measuremnt interval, w and s, result in P0 6 j.,. The following equations

trace the influence of the data correlation through the moving arc smooeindg

The calculation of the smoothed dependent variable does not formally

Sdepend on dn in the ata. An nth dogma -ol-n=al$ Ysoi÷• is
constructed through N data points. The ith point is in the center of this
smoothing span and j ranges from -a a -(N-l)/2 to a to locate individual
measurements. The polynomial is a summtion over orthonoczal function which
are defitnd by

k

Fk(sj)w C (2.2)
PIE 0

where orthonormality determines the CkA's; thus, the polynomial is
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n ~n k

Akj(i) rk(uJ) Ak(i) CkO~) * SY•+I kno k O tw

A least.square calculation nmaiilize-
(Y -Y(2.4)

52.0 X-C&

SIto deteru.ne the constants'to be

,,Ak%(i) a Fk(sj) Y .+j (2.5)

The derivative of Ysll is obtained by m differentiations of YSi+l with

respect to (Xi + sj) and then setting J equal to 0; this results in .ii

* [dYs,/mI/ d•) AN /dm (m!/s1) I (m Aý) Ckm

'!::• M!V ! a• " * ~ ai Y~~1 (2.6)

s* kanMO

Since the cYSji/d)P values are functions of the Y +j data through the
Ak(') values, the error• in these derivatives are also dependent on the errorsand correlation of the Yi+j data. The variance of dyOY I/d is calculated

i~j S ;i
from expectation relations to be

n n

VAR(dmY ~/d)P) a(mu."')l ~ ~ COV[Ak(i)oAk,(i) (2.7)
k~m k**im

The covariance of A(i) nd A..(i) is found to be
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COVEAk~(i) 9A~c(i)J 3 I F 1( ) X

ZE (Y 14 y~~ (Yj.l,j -Yjj)) (2.8)

St yusing
•').i!1 Cov (Y{.+.j Y+j.) -- 1• VAR(Yi)

for

( (i+j 1v.' ±+1) Yi+i I'y. Li+j 3

the correlation-ignored result is found to be n

EVA • •Cd"S/d)0)3 (m,/,l)' VAR(Yj) I S, (2.9)

The degrees of freedom used in VAR(Yj) is n+1 loss than N. By using the general

expresson p(iqj ,j VAR(Y ) f, wli÷u .yi+"1), the oorrelation-considered
result is found and the ratio of the correlation-considered estimate of variancet: o tho corlation-ignored estimate is calculated to be the product of

RM (j) 2 kamnk ar mO Pmo A,42 -i I 2=O%

where (•j) a 1 for J.L.O'and Q` ) 1 for J'mP/O, and

F -n +1 (2.11)

whome T is the "true" reduction in the degrees of freedom discussed in Seotion 3,

Flor sme nts of the data in which the correlation coefficient ray be
assumind oonstant in i and m.yutrio in j and j, the R=(i) may be rewritten
to expedite ocuxter calculations. For jol,% the correlation coefficient must
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PF.

be unity. This fact and the symmetry about the two diagonals in the array of
possibl1e jand J` values am' used to rewrite the nwariator of R.M. The
definition and orthonomvality of the F,(Bi) functions siznplify the sum over
the main diagoA24 the result is

nn k k((

Ici km-- totm

-4-t

m k o:m LaO t2oO julo

n n k k-N (N--)/2 (6-i)
+ 4 j io jkum k am LaO uO jl '..-)

thankkkV~~ ~Is'wo$ (2.12)

C J'MQ5N1/NN4

C 'mJ180/N(N'..2)(N'-4)

C "/ 2600/N(N'-7)/N'-4)(N'.-g) ,

* I 81NaC2.,N5-95/64NNCNN't3MT16y

c a -225(3N'-135'/N(Nl'-l)(N'-4)(N'-g)'N'-1e)l~.a
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, /44 60/N1N,-1)(N,.-4)(N2-9)(N2 -. l) ,

C * I d.l(1N4-23N1+'4o7),/l-N(N -- )(N'-4)(N'.9)(1'-S)CN'u25) ,

C * I 4N. (2,13)

The systematic occurrence of :Ceros in the table of Ck, values My be used to

further expedite computer calculations. Since C.. N 0 unlean k + t i:s 'even,

each te•M in the sums of Equation (2.12) i• identically Zeo unless k + m,
k` + m,k + i, and k)c4- A+ X-e all even,

, KA•dX DEVATION OF .NUE OF p Q•$ OF _, ..M.

The aw variance of data analyzed with a snoothing spAn of N points is

VAR =, (3.T)E)

The nsqumora eEOsT e), is the e to n value for the sum of the squares
Sof' 'the diferencee et-ten data talues and corresponding sM0othed or filtered
values. The denomirwtor, N-T, is called the number of depose of freedom, The ,
reduction in the depose of freedoms T, is dependent an the corlation of the
data in the snoothing span. Fot zero corelation, T i one more than the degree
of te polynomial uteh expeooching. That iorrapepnds to the numbeo ot h onstantein the polynomal, Fbr the total correlation T ic equal to N, In this cases
t•he varianme is undeftied, The followng derivati•on yields a delcriptio oft•he degrees of freedom for interndiaee corrfecasionsn

7he depen~dent variables, Y, may be arranged in N by 1 matrces. ach of

these colunn matrices are related to the independent variables, polynomial
ocefficients, and random errors by

Y " X8 +.E (0.2)

The rth 'rcw of the random error ol~umnu matrix, EC, contains the error, 1rI of
the rth dependent variabls, Y , The nth degree polynomial coefficients, B

b e.l l Bo, are in he n+l by oIcolumn matrix S. The N by n+l matrix X may
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be considered as a composite of n+l oolumn matrices, Xno n-I' 1"' 0" The
rth raw of each XcotainA the oth pow of the independent variabl. Xr that
jcrmeaponds to+ he dependent variabe Y.. The mo~othed or filtered dependent
variables ¥2 , awe given bx the indepenmit variables, X, and estiwot of the
polynriaw coefficients, B, w

SA A

A least-squares calculation mny be used to find 8 . The uummtion of squares
for the deviations,(.)

is given by

er E., E (.6

T Iwhere 5 is the row matrix which is the trianspose of the colurm matrix EAod A A .
containing the a 'Is. Substitution of E a V-V a XB, differentiation of the
sum of squates with respect to Bi, and setting the result equal to zeo yields

a 0 • Iull~i~ixlel: + 3TxTxi J + EiYTX, * BFxt T (3.5)

>lere Ir £is a columrnr matrix defined in term of Wanicher delta functions,

hio ' 0 if VIE .andi kk I :,by, 8
+ ~ ~~ilnI.<

rl ne (0.7)

I "I
Since each of the two taer in Equation (3.5) am, scalars (i.e., Iby I matrices)
And the second is the transpose of the first, the two terms ae equal, Thus, A

Equation (3.8) uimp-lifies to

o2 [-YTx O~T XT X1 3(3.8)
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This further simplifies to

- (XTX)UIxTY (3.9)

where the . superscript is the standard notation for inverse, This remult
utilizes the raw data to estimate polynomial coefficients.

The raw variance of the data within the smoothing span in found by relat•ng
the expectation values of E E'TE E and E E . The first is estimated by
the mum of the equate of Yr-yr' the second is the product of N and the desired
variance denoted by at, and the third is the product of the correlation matrix,
V, and a'. Substitution of Equations (3.3) (3.9) and (3.2) into the definition

aE ! -Y yield.

where 1 is the standard unit matrix whose elements ate defined by Iij 8i

and (xTxW1 is the inverse of (XTX) defined such that
(XTX)-'(XTX) - (XTX)CXTX)"l - I

Equation (3,10) leads inmmdiately to

Taking the expectation value of Equation (0.11) yields

SE E = {E5
Tx(x TxTX) TE

The first term on the right is just No', The last temr may be simplifed by
noting that the quantity in braces ia a I by 1 matrix, replacing this simplematrix by it. trace, and using the identify

Trace (ABC) v Trace (BCA) a Tace (CAB)

PFuther simplification id made by interchanging the order of expectation and
trace operations and finrily by making the usual assumption that the measurements
In X are PeyAct so

"ErfCX)(EE E T)3 (X)(EE T)
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The result is

ECK, 5) E NO Trao{x(X X)'X*T(E 5  C3.12)

The use of (EIE ) Val yields

T Ti

"N-Irae(X( XTX)"J V}

Equation (3.13) is cu•mbersom because the trace is performed on an N by W matrix,
.1 Trace algebra converts the quantity inside the bracesm to a n+l by n+2. matix.

Estimtion of E(E*TE) by EIthen yields an estlimate of the raw variance to

Nwfrace (X X-TV)

The evaluation of the effective degrees of freedom, i.e., the denominator
of Equation (3,14) is dependent on the data through V and the amoothing process
thoughX end N. TheX matrix is•given in termb of xj s + si Wher x is
the mid-Voint of the smoothing span awd e is the measurement interval. The

bea*1 (3.15)

ISI 0*II

w-ere a in defined by (N-I)/2. Although X depends on s and xil the deores of
freedom do not, The independent variable's incrementa, s, has no effect because
it does not effect either the variance or the mum of the squares of the deviations.
The midpoint of the independent variable sagment, x1 , has no affect under the
necessary assumption that V matrix describes the correlation in all seements
considered. Flor coutational ease, s and xj may be let' equal to 1 and 0 for
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the dtevees of freed=m calculation. This sinrplifies x, to xuj The
Tcalculation of the r1+l bY n+l matrix, X~ VX, is further 9;.plified if V in

'described with a uingle Markov constant p byV Nt re '~I *Tether n+l by
"W- Wrm (X )"+'$I1 may be obtained by either' analyticall.y or =piutatiorially

'finding the inverse of

ii 2n InI

where all swmwtions'are over the range - The sum~ations over powers ofj
nay be found with sit-her a computer or a ffrtlematics handbook,

If one desires an explicit equation for the defrem W1 freedom, the
przocedur'e of the above paragrah can be clons analytcally. The results for
neD, nall end n2are, respectivelyt

DoT1  Nw - IM tVHI + to VH0] amnd (3.18)
45 *N T j2*-l)2q+3 H TVH

-~ ~ TVH + H~~2fa±-2 %TVH] (3.1i)

wher'eH is given by ~

Hj 4,+l 320)
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with the understanding that [030u 1. For' each of these three equations,
substitution of V a H 0H07 yields meom. This usirly states *that totally

acw~elated data has zero degrees of freedom. '

if the identify mtrix is used for V in Equations (3.17), (3.16), wad
(3.13), thie results are DOF uN-.1, DO? N-21 and DOF mN-3. This checks
with DOPrv N..(r+l)s ise.,*gre the nu.mber J eme f freedom equals the num~ber
of points in the smoothing span, minus the number of constmnts in the polynomal.

4.* EST~t46TE OF CO~PELATION COEmCzn~TS.

The covariance of two raw data points, Yi+6 and Yd.+ 01, is related to
their correlation coefficient and the variance of the in the range

OOV(J+6 Ai+,# spij I i- VAR(YQ)

The pseudo-deviations are defined by

ei+j I 'Yi+i Yslii+ (4.2)

Where Y is not the true mean which would yield the true deviations;~ instead,
it is the kth degree polynomially srmoothed value from the operation

Y (4.3~)

The I.~s ane restricted by

and are defined by Equation (2.6) with *p and mO, 0

By using two fast Fourier transfurms and asiociated mni~pulations,
MV*j si j 0), 1 my be obtained. The needed quantitiesI however, are either
COV(Yie.j. Yi+1O) or Piji~, and VAR(Yi). Unfortuncately, these cannot be
obtained without applying constraints. Prevented below is a method of
determining PiýJj and VAR(Yt) assuming that Yi~1 is a kth degree polynomial
with additive First Order Xarkov error.

135



p�T�TrrTnrT -

DYdefinin5b� E8�* - the pseudo-deviation. may be found from

S bp Y�+j,� (4.4)

I
and

e�peotationthe value of � � mmy be shown to equal both COV(ej+j�

K 2-� qLs � � �V(Y 4 +�+��
bb Yj�ji+q)

These reaulti and the uae of Equation (4.l� leads to an .�z.uuion,

Th First Order 1b.�*ov craw in the i+l point, r is given in tern.

variable, � by I

Relating e�peotation values of t � for all values of j may be used to
.x�r.uu the correlation ooeffio±'� as

Pjj� * I�w.j'I I (4.7)
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By using Equation (4.7) and defining an index$* -j Equation (4.5)
becons

C~~.. jgj) A(i) b (4.8)
pe-a qm-c q

This sot of equation. has only two unkncwnst p and VARCYj) The straight-
fauvrd approach would be to define a devia~tion by

A a cOV(ea.+ * ej~j) -VAR(Yi) b p b~ qI$(4.9)
pamu qn-01

calculate a a=m of squares. by

2m
SN ~ A'(4,10)

andI find tevalues of 0and V'~(Yj) thAt sim.ultaneouuly satisfy(4*)

VA( ac (4.11)~

Unfortunately, the direct procedure is algebraically intractable.* Analternate ~r'oach is to first perform a calculation of Equation (4.12) and
find the ZAP(Y1) as a function of p to be

Eov~ej~e±j~)zb b pI.+q- 4.3
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and second, define a new devia t ion as a function of p only as

and graphically find 0 as the value of p which minim-4zes

where 0 is still bounded by -2a < < 2a. In this graphical procedure S" is
of course a function of p. The iaviing restriction which makes the procedure
tractable is that p is bounded by -1 < p < +1, The computation work is still

A considerable; however, so it is worthwhile to use the invariance under change

in sign of 0 of COV(eib. b + 1 b ý 4 p, and

S. NUMEICAL RESULTS. Twc sets of numbers have been analyzed in order to
c.eermne the usefulness of the theory in the last three sections. The first
set has been generated by using a random noise generator an• introducing First
Order Markov corraation of ]aiown p. Tne second set is from a missile versus
drone test at White Sands Missile Range.

The generated numbera do not lead to completely desirable resul ts from the
analysis, Table I bhows the innut and one set of output of the computerized
equations from the last three 3ect. .ns , Fop large values of p, the two resulting
variance estimates agree withi each other but Iiverge considerably from the input
variance. The basic discrepancy occurs in zhe output p.

* Comparison of the left and right columns ox ToLle I shows deviations for
all values of p. Table II shows sample output of p's for ,anges of smoothing
span N and polynomial degree n. Since the output average is 0.67 ± 0.07 when
the input is 0.5, and 0,17 ± 0.05 when the input is 0.2, it appears that the
problem is in the variability of the output.

Analyzing data from missile versus dronr missions displays more variability
of the output. Table III shows the results of varying smoothing ipan and/or
polynomial de~ee on missile position date The resulting output p varies in
an unsystematai. manner. A further lack of uniformity is shown in Ta.le IV. ThM I
drone, which the missile of Table III was attanking, was airborne for sufficient
time to analyze eight successive segnents of 256 data points. The v&riation in
output p between segnents is evident, but again there is no evident system of
variation. A final illustration of the non-uniformity of the output p is shown
in Table V. The Cartesian coordinates of Teble IV were calculated from azLnuths
and elevations measured with several cinetheodolites. Table V shows the averages
and variance estimates of five elevation output p's from one oinetheodolite.
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6. POSSIBLE CAUSES OF DIFFICULTIES. The panel at the Twenty-Second
Conference on the Design of Experiments in Army Research, Development, and
Testing made some cormrmnts on this problem.

Pfirat the use of polynomials was seriously questioned. The fluxuation.
in calculated p should not occur if the mathematical model fits the ýhysical
situation. Since the form of the equation for missile trajectories is unknown
except in idealized circumstances, a parameter free approach was suggested.

Second, if polynomials must be used to compare with current correlation-
ignored results using quadratics, it was suggested that the sum of squares of
doviations should not be minimized; instead of deviation, the deviation divided
by the square root of a previous estimate of the variance should be used. This
procedure, which would change both the position estimates and its variance
estimates, should be iterated until th3 position estimates stablize.

Third, since the path of an object depends on previous position, velocity,
and acceleration of the object and not on future values, it was suggested that.
est.mates of position and variance should be determined from the forward time
end of the smoothing span, instead of its midpoint, estimate position and
variance.j

'7. ACOWLEDG EN. In addition to the members of the panel at the
TwentZ-iecond Conferece on the Design of Experiments, several personnel at
White Sand6 Missile Range have contributed to this project. A special
acknowledgement is due to Elton P. Avara, Atmcsphezic Sciences Laboratory,
Meteorological Satellite Tech Area, WSMR.
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TABLE I

.j'rpUTrUSING nuO AND Nm17

INPUTN

*or OF GM4RATOR FOR-DEGREE~S
~~TOR G~ENEATOR Ot1TpuJ OF FREEDOM ROUTINE ESTIMATE

.01 1.03 1.14 1.13 .06

.11 .97 .96 .99 .12

.2 1 .98 .91 .8Js1

.3 1.94 85.86 .27

.4 1 1.02 .87 .90 1

.511.07 1.12 1.15 .61

.61.81.01 1.12 .66

.7 1 1.01 .92 1.05 .77

.81.94 .67 .73 .70

.9 1.84 .43 .47 .79
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p .Z~... ..... .. . n.... .. 7

~ ~.rl,,A..., I,.,.

~~TA 11.

0OU OUTPUT p
VSPAN n 0 ori n 2or 3 n 4 or5 INPUT

1 .61 .50 . s

69.4, .58 .46 .5 .

21 .. 7.6

17 ,11 .20 .25 .2

1 .•19 .18 .2

21 .13 .14 .21 •2
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TABLE I'Il
MISSILE ANALYSIS

SMOOTHING 0 U T P U T p
SPAN n a 0 or I n 2ozr 3 n 4 Or 5

7 .02 .20 .0 ,

11 .00 .09 .30

15 .10 .04.0

21 .35 .06 .07

31 .58 .10 .07

TABLE IVDRONE ANALYSIS

OtWPUT FOR n .2 or 3 AND SMOOTHING SPAN. 15

SEGMET X Y, Z AVAGE1•"3 .30 .8 0 . 59 .6 9

3 .57 .31 .94

4 .89 .69 .50 .89

5 .86 180 .68 .78

6 1.00 .43 .52 .65

7 1.00 1.00 1.00 1.00

B -. 06 -. 08 .25 .05

AV~ARE .64 .54 ." .9

TABLE V

OUTPUT p FOR ELEVATION OF DRONE 1ROM
FIVE SUCCESSIVE SEGMENTS ON ONE FILM

nf 0 or n ,m 2 or 3 n 4 or5

.86 1 .27 .34 ± .39 -. 08 1 682

14,
•1. ..... . - i .



i ***• i " " •' • . .. .i• . . .. . . . . . . . ..... ... . . . . "

SII

ROBUST OUTLISR DETECTION IN TRAJECTORY DATA REDUCTION

William S. Agee and Robert H. Turner
Analysis and Computation Division

National Range Operations Directorate
US Army White Sands Missile Range

White Sands Missile Range, NM B8002

ABRACT. A data reduction program at White Sands Missile Range that
often has an hour of flight time is called the Multiple Radar Tracking
System (MRTS). Undetected outliers destroy automated data reduction
causing a significant number of reruns with human detection of these out-
liars. The procedure described in this paper enables the MRTS to reduce
large quantities of radar, data with very little chance of being influen-
cod or ruined by outliers.

Outliers are detected by examining residuals from a least squares
estimation. Three robust methods of estimation which are insensitive to
outliers are described. The masking effect is almost nonexistent inthese methods.

1. INTRODUCTI An entire trajectory of Cartesian position velo-
city and acceleration data is produced from radar (range azimuth, and
elevation) data by the Multiple Radar Trajectory System JMRTS). The MRTS
consists of four distinct areas:

a. Data gathered from several sources are merged onto one file after
being calibrated and time corrected.

b. A preprocessor oliminates outliers and computes initial observa-
tion variances and initial X, Y, Z positions. The robust outlier detect-
or is in this stage.

c. A batch paroceslor produces the entire trajectory simultaneouslyfrom all observations (except outliers).

d. A fixed lag optimal smoother then produces smoothed positions,

velocities and accelerations.

The remainder of this paper is about the preprocessor stage. As the
program is at present whenever outliers are found they are discarded
instead of being dewetghted.

In order to detect outliers an examinatiorn of residuals should be
maoa. But these residuals must not come from an estimation of the ob-
servation process that is influenced by the outliers. Three estimation
schemes are described which are resistant to outliers. Two methods of
examining the residuals for outlying observations are described. The use A
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Wof the outlier resistant estimation and residual examination make up the

robust outlier detector used in the preprocessor stage of the MRTS.

2. OgLIER RESISTMNT. STIMT1IN, The observation model is i

Xi M a0  + &it' + a2 tt 2  + cs, I W 1, ns

T h e t h r e e m e t h o d s d e s c r i b e d a r e c a l l e d : t ,

a. Least squares with robust weights, %

b. Brown-Mood, And

c. Thel t-Sen.
The first one Is used in the MRTS.

6 1 1 1 1 j a u a rl s w jt h R obus t W ita hts . T h e m e d i a n o f t h e o b s e r v a t i o n s x *
and its respective time tP are found. For each observation compute ..Jj

Solve for the

by minimizing

WI (x1-ATi)2

where

W1
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Brw-od The following steps show the iterative process for slope
and iIvaiure-coefficiantsi

a -Initialize

P* mod (ti)

t Umod

t mod(tl*

J 0

b. Find median residual in each haliI

te* med

X" med (x -S(J)t 2i~~

1--

a2  2 (t+ 2 (

The relaxation factor of12seems to provide faster and more stable com-

d Reeatstep tw an thre utilconvrgecethen compute the
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`71 7 17777 "TT iP

-£~ )t2))
0a med (xi-al It 1~~~ a t 1fi

div1.i~ This method Is not iterative but It does require many
diviad differences be taken. First, all the divided dtffarehcesý jj
without duplication

X 1X

To compute all possible divided differences of the dj I would take too
much time and space. Instead a smaller number of divided differences
which represent the dj,| well Is computed

)-I+A t

for

M 1 -24
I s, In/3]

Let

g ss- med (e(1,i+t,1+2x))

Now

J.~ &I a+ a2 (t +t t)
Jul

since

Xi GO e+ Alt 4'2t

a * med (dj,$-a 2(ti+tj))
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and finally

0o med (X 1-8 1t-6 2 t)P

3. kITCT IONf . A Grubb's-tYpe StAtistic proposed by Teitjenand Mol•orojJ•]1 rside bed. A modified version'of this statistic is usedttn the••NRTs.

W Allresiduals are ordered by abiolute Values.
erveOn, le'names so that the r's correspond to the ob-

Zl " r,( 1), " n • r(n)
After finding the largest gap

(IZn-k+lI IZn kl)

compute the test statistic

n-k
Ek(n) '•I t"') l

• (z f•)2

where

n-k

end

n

If Ek(n) is smaller than the desired critical value, we conclude that
these k most extreme residuals correspond to outlying observations.
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v: 1
crlb. 1exc.~tr TYRO Stg1itIcs, This is the same as previously des-vrable except for the denodnmintor of the test statistic and the critical

ivalue selected. Instead of esting for k outliers in n sampless we testfat, aneoutlier In n-k+l sample&, We comp~ute

n-k

El (nibk+l)

where

n-k

andto u

'k = n-k+l

Thel

If 9lln'-k+l) is smaller than the desired critical value, we conclude that
the k most extreme of the n residuals correspond to outlying observations.

} ( 3. u~The three previously described estimation procedures
iand 9; nwgad least squares were applied to four sets of real data. _SThe original sets of data and residuals from each estimation are listed.

AM2 L a set of 16 observations where the last two are outliers

LEAST SOUARES
_BSE2VATONS B BRQWN-HOQD I L LEAST

S1. -. 0051 -658 -74 -11 -3829
2. -. 0048 -281 -47 -6 -6479
3. -. 0044 24 -22 0 -7632
4. -. 0041 257 0 6 -6991
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LEAST SQUARES-OSEVAIONS- W/ROBUST WTS PMN-O THEZL-SEN LES 0AE

5. m.0037 418* 20 11 -4854
of -.0033 557 87 67 -1071
7. -.0033 524 51 22 4207
ai . 0027 419 13 -22 110819. -. 0023 342 72 33 19650

0 1 10. -. 0021 06 -71 -111 29616
lie 10, -0017 -227 -17 -56 41376
12. -. 0013 -520 34 0 54731
13. -. 0010 -985 -17 -44 69583
14. -.0006 -1421 29 11 85129
15. -. 9590 .960730 -958727 -958733 -8654528
16. .4451 442389 445014 445022 668910

rIxmle 2 - a set of 15 observations where the third, fourth and

LEAST SQUARES
OI.,SERV ONS W/ROBUSTT S B N.HOOD IHEIL-SEN LEAST SQUARES

1. .21709 -1611 -444 -135 -332222
2. .21824 -1497 -413 -87 -314194
3. -.95519 734413 735891 735744 441640
4. .94511 723287 724437 724529 452449
5. .93499 712116 713216 713266 465224
6. .22288 -1061 -24 -23 -221986
7. .92405 -943 -11 -39 -193910
8. .22530 -760 54 9 -163748
9. .22662 -612 61 9 -131611

10. .22770 -510 0 -47 -97508
11. .22900 -293 32 0 -61280

12 .308-101 110-23066
13. .23165 75 -39 7 17144
14. .23286 286 -81 0 59399
15. .23418 502 -140 0 103670

and a set of 15 observations where the twelfth, thirteenth,It and are outliers (restdualsxI06 ):

LEAST SQUARES

1. -1.70987 -3359 -599 9 -157774
2. -1.70942 -867 387 0 -204
3. -1.70893 991 226 12 105480
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LEAST SUARES !
OHIBIATI.N WROYIUSTLir BROWN-MOOD THEI'LSIN ILAST SOUARIS,

4. -1.70845 2166 61 -5 159227
5. -1.70793 2708 -54 0 161087
6. -1.70741 2576 -159 -14 111021
7. -1.70682 1841. -186 23 9099
8. -1.70626 402 -233 12 -144780
9. -1.70571 -1721 -282 -28 -350595
10. -1.70610 -4456 -262 -28 -608277
11. -I1.70449 -7866 -232 -45 -917885
12. 1.43777 3129701 3141456 3141568 1862231
13. 1.44602 3132586 3149144 3149153 1466410
14. -1.70257 -22044 0 -121 -2158177
15. 1.44667 3120482 3148695 3148416 473139

Em a set of 21 observations where the seventh, twentieth,
and twe: t .y-frst are outliers. This example Illustrates dropped sign
bits and zeroed data (residualaxlOS):

•;1 LEAST SQUARES
"BJERVA.UL W/ROBUST WTS BROWN-MOOR TH,4,, LEAST SQUARES

1. -. 00988 -123 -423 -248 -4433
2. -. 00995 -88 -337 -178 -2839
3. -. 00976 212 9 154 -1203
4. -. 01017 -83 -243 -114 -386
5. -. 01015 47 -76 39 632
6. -. 01023 102 14 112 1351
7. .0 10463 10404 10487 12152
8. -. 01047 129 95 162 2034
9,. -. 01083 -90 -103 -52 1807
I' 10. -. 01089 -4 0 35 1661
11. -. 01089 147 164 182 1356
12. -. 01121 -16 8 11 513
13. -. 01143 -75 -46 -60 -449
14. -.01182 2 30 0 -1500
15. -.01185 -156 -133 -179 -3010
17. -.01206 -6 -5 -85 -6236
18. ,,.01241 -168 -185 -282 -8422
19. -. 01239 45 5 -108 10457
20. .01215 24783 24717 24587 11810
21. .01301 25846 25750 25603 10177
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4. £QNG&g~Z2~j
a. Least Square& with R~obust Weights:

am(1) Almost always can produce residuals which reveal up to half the
sample to be outliers,

? ~(2) is the fastest of the three estim•tors described, and

(3) May be improved with other choices for weights and iteration.

Sb. Brown-Mood Estimator:

(1) Has unknown convergence properties and

(2) May not work if too many outliers are in one half,

c. Theil-Sen Estimator:

(1) Has robust coefficient estimates,

(2) Is slowest and simplest of the three estimators described, and

(3) May be made more efficient by taking advantage of equally spaced
data and for other schemes of selecting divi ed differences.

• i d. Grubbs'Type Statistic:

(1) Has no masking effect,

(2) Is fast and easy to use, and

(3) Could use 2d difference criteria to determine which k residuals
to be tested.

e. Modified Grubbs-Type Statistic:

. (1) Simplifies table look-up and

(2) Detects same outliers as the Grubbs'-type statistic on all
samples tried so far.
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TABLE LOOK-UP.AND INTERPOLATION FOR A NORMAL

RANDOM NUMBEk GENERATOR

*Willifim L. Shepherd and John N. Hyne3*
Sys *tems angmerit Division
Tnitr~men'tation Directorate

O S Ary White Sands Missile Range
White Sands Mis~sile R~ange, New Mexico 88002

ABSTRArT. A normal random number generator using table look-up and Inter-
p~o a tion for the inverse normal distribution function is presented and
comparod %~ une where the inverse function is computed from a commonly
used formulh,

1. INTRODUCTION. In.Monte Carlo problems and in simulations of noisy
mneasurements, the cost effectiveness of the required normal pseudo-random
number generators is still of some economic importance. We present and
compare two such generators. One of them is available on the Univac 1108
computer at White Sands Missile Range (WSMR); the other is the main subject
of this report.

2. 1.ER-SE-DISIRIBUIIL FUNCTJON METHOD. Let

P(x) *-1- Ix I et /2 dt (2.1)

and {y} be the output (sequence) generated by a uniform random number
generator with density function equal to 1 over the interval [0, 1) and

0 elsewhere. Then (P'(f )) can be thought of as the out put of an n(O, 1)
random number generator 1, p. 950). As mentioned in [1], the principal

difficulty in using this principle is in the computation of P"
1 (y). In

one of the normal random number generators In use at WSI4R, P'1 (y) is
computed by the formulas

*-y P-P1 (l - y) for 1i~ y 1 ,(2.2)

Q2 1o

1 + b n +b2 n + b I
1 2 3
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-. ..... . . . .

where

a0  2.515517 b1  1..432788

a, * 8028B3 b~ .189269

A 2 * .010328 63 U .001038

Awith error less than 4.5 x 10 (This formula is also given In L)and
[23.) We refer to this generator as Generator A.

Intefollowin sections, we describe another approximation toP 1 ()
referred to as gnrtrB

3. A SPLINE APPROXIMATIQN TO P -1() 2ist corsde

g(y) *g(a) + g'(a)(y - a) + o(y a )2 fra<y

g(b) + gl(b)(y - b) + y(y - b)2 for y b . (3.1)

Set h b b-a y....L

* (g(b) -g(a)) -- (3g'(&) + gl(b)) *(3.2)

Y - - (g(b) -g(a)) + (g()+g() 33

=h1

With some laborious manipulation, it can be verified that

gG g (71) , g 1(37-) g, g(7) . (3.4)

g(y) is a quadratic spline, with knots (a, ),b), on [a. b], which inter-
polates locally between (a, g(a)) and (b, g(b).'
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Now# consider the 2N+i knotsI

a kk" t2 t4' t2N 1

21+ ti+ti2s9I 
-

and the splines

g()*P( 2 0) + P, ( 211)(y t21) + 01( t20)2  ,t 2 1 ~.y t2 w.

P(211+2) + P1'( 21+2)(Y t21+2) + -( t 2 (3.5

21+1 2~ 2 -1y t2+

4 where

Oi -17- (p"'(t 21+2) -' P(t21)) - s-(3P-I (t 20 + P"1(t1  2) t (3.6)

41 * - -.Yj- (P"1(t21+2) P Fl(t21)) + -s-(3P1't 1 2 -'t 1 ) ,(d

h1*t1.. 211 . (3.8)

Define

4 gt)* 1() 21 ~t t2i.+2  1 u0~, Is .. N-1 (3.9)

From (3.1), (3.2), and (3.3), with a, b. g(a), g(b), g'(&), and g'(b) re-

pieedy 21̀1 t214 1  (+21 ) Pt 21142)1 P't 201) P1'(t21+2), g(t)
Is A Wpine agreeing, in function and first derivative, with P()o

(t21iwob(g(t) also has the knots (t 21+11 N1.O) g() interpolates the

21 21 P'(3.10)
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In order to use (3.9), (3.10) for a normal random number generator, we need
a suitable table and a means for computing NOt for t2 t -C I

* DeWine

li h/1(ab) mvu{g(t) - P-(~tr C~]

We need a t2N Close to 1 and a sequence (t21  with a small N so that211*0
ig - P"1(/. < for a prescribed tolerance c. We used numericalZ~ optim~L 2N::)iy esatdwt o 4. optdt ota

search not deicribed in detail here, It took up much computer time and is

then recursively determined t21+~2 so that

IN - P"1'(t2  t tV t 1  t t2+

tNwas determilned empirically by stopping when t2 - 2N2 Warn less than
a prescribed tolerance 6.

For the computation of P-1(y) in the above, we used Newton's method for
solving

for x, with
P(y) + (I
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from [11, and

P"'(1Y)1

i) ,- (x) /2

Our numerical experience indicated that near one the knot spacing needed
to obtain the required accuracy Is not feasible, as N is large. we now
present two methods for computing P l(t) for t2N < t < 1.

The first method is to use the approximation (2.2) from Generator A.

The second method Is to approximate P-l(x) by a quadratic splint with
knots {t2N, +(l + t2N)0 1} which has the same area under the curve as

does P1l(t) over each of the intervals [t2N, .- (t2N + l)J, and 1---(t2N + 1), 1.

Table 2, 3 gives the requisite coefficients for N - 29, N a 89, respectively.

LEFT INTERVAL, RIGHT INTERVAL refer to [t21, t 2 +131, Et21+., t 21+23, respec-
tively, The last row shows 1 to be a knot. The entries in this row were
obtained according to the equal area criterion and would not be used in acomputer program where a rational approximation is used for tN _t<1

EXAMPLE FOR TABLE 2:

For I * 13, .914502271 < t < .920905352

and

g(t) * 1.41118763 + 6.78465741(t - .920905352)

+ 30.8378448(t - .920905352)2

4. NUMERICAL RESULTS. The Generator B was run under 4 separate conditions
as indicated in Table 1. The interpolation tolerance for N * 29 is 10.4

and for N - 89 it is 10.6. Results for Generator A are also includes in
Table 1.
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TABLE 1. AVERAGE RUN TIMES (CPU) IN SECONDS WITH IDENTICAL INPUT
OF 10,000 POINTS

GENERATOR A 2,427272

GENERATOR B

For N a 29 (with rational function approximation
"at the end) 1.307336

For N * 29 (with spline approximation at the end) 1.111576

For N, 89 (with rational function approximation
at the end) 1.503344

For N a 89 (with spline approximation at the end) 1.276524

5. CONCLU§ONS ND ADDITIONAL RESEARCH NEEDED. From Table 1, the fol-lowing empirical Inferences can be made.

a Generator B with N - 29 and with either end option is slightly more
accurate, and about twice as fast as Generator A. It requires 186 stored
constants.

b. As compared to Table 2, Table 3 provides for interpolation over a
larger interval, is a little slower, provides six significant digit inter-
polation accuracy but requires 643 stored constants.

Additional research could be done in the approximations at the end. (2.2)
is not necessarily optimal for t2N , t < 1,

The constants for Generator B are believed to be of nine significant digit
accuracy. It Is possible that they do not have to be this accurate.
Further research could address this problem.

Since computation for N w 89 is only a little slower then for N - 29, but
interpolates much more accurately, we think more of the CPU time Is used in
the interpolation then in the table look-up logic. As higher order inter-
polation is slower than quadratic, there is not much advantage In using it
in order to reduce the required number of knots.
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hPfIHDIX.A. In this.Appo dixt we outline the procedure for ex. ending g(t)
* ~ ~ oe th ~ i i~ nterval Et2N .Picply we wnt to exhit (A.3)and

(A.4), omitt;ing miost of the detail.

First, we want o so that, with

90 -(2N) +P 2N)( -2N) + 2NýM A1

for' t9N 1 t + 4 (t2N + 1 ehv

gP(t ~tt a (A.2)it29N P1(tdt2N 2N

By the change of variables t uP(x), we have

itN P 1 (t)dt *P xT P(x)dx
2NP' (t~~

1P -- ) iP(-x /2)dx "
~'2~ P (2N)

3 ' (epC(P'( 2N))23 - vpEP1-(I")) 2J) . (A3

Simillarly, *

I1 P"1 (t)dt U e.m P-' P(t)dt a 2-tp[- (P'1 (T))g3 (A.4)

(A.3), (AM), and (A.2) yield

(P-1(t2N)(f t2N) + i~P'11(t 2N)( t2N)2
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For t,4 t 4 1, we proceed similarly to definer

IN~t a N(T 'g((t ) + y(t )

~~ . Y)~~ + N. 1()~ )

It should be noted that 90~) is not$ strictly, an interPolAtiOn function,
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iIGZ3WZCTORB ANALYSIS OF EMPIRICAL DATA
VERSUS UTILIZATION OF STANDARD FUNCTIONS

Oskar M. Essenwanger
Physical Sciences Directorate

>' Techuology Laboratory
Us Army Missiole Research and Development Command

Redstone Arsenal, Alabama 35809

agllAo. Parameterization of empirilaa% data (e.g., the wind pro-

W• W. approximatidon of dat~a by mat~hematicloa functons, In &onorall several ;

options which lead to solutions are available but the question of which,', i. is t~he most: suitable form iLs soetim:Les difficult: to answer,

ofteon a spoecific gole of approximati£ng dat~a by mat~hematcd~al funections :

is the derivation of one characteristic parameter or variate, Thaoreti-
edfy, eitenvect~or analysis (or equivalently the development of empirical
polynomials) should lead to maximum information by a single parameter.

A comparison between approximations by oigenvectore and standard
(orthogonal) functons has been made. It is shown that in particular
astes standard functions can achieve equivalent reductiLone of the

variance and they may be simpler and more economical to compute than
sigenveator funotilons.

1. INAO• • Parametrization of atmospheriz data (such as
the wind prtfe a "s ocion of the altitude) requires the derivation
of suitable mathematical expressions, The availability of high speed
electronic data processing tools has opened the door to a utilisation
of tho most sophisticated mathematical tools even for the generally
huge collectives of atmospheric daeta. For example, the calculation of
empirical polynomials (or sisenvectors in mathematical terminology) is
now possible without too much difficulty for the large dimensions of
atmospheric data matrices, Consequently it is very tempting to "grind"
huge data collections through the computers without considering how
much benefit these highly sophisticated tools render compared with the
application of standard functions or simple parameters,

in this article, some light is shed on the utilization of empirical
polynomials in comparison with the use of standard functions exemplified
by the wind profiles of certain altitude rangs.. Under curtain condi-
tions, standard functions can achieve an equivalent reduction of the
variance to the one obtained by oigenvector analysis.

¶,_3.• 2H CA ZAULATIGN OF .IG3INTTOI.S The problem under considera-.
tion as the development of proper functions for the wind speed profile
Vh where the h is a subscript denoting the altitude. Vh designates a

mean wind speed profile. The wind direction 0h can be treated equiva-

lentl•. We formulate the representation of the wind speed profile:
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Vh,i "ih " B l,h + 2,1 2,h + ' Bn ,i h (1)

where i - 1,..., N, and n << M. In this equation the coefficients B

and the functions #Jh must be determined.

The development of optimized characteristic functions *jh is a

known problem of matrix analysis. A mathematical formulation iso

K; vH (2)

where M, designates a matrix of eigenvectors (or polynomials), Mv the

data matrix for the wind profile, and 1ý a (diagonal) matrix of eigen-

values. The elements of the (symmetric) data matrix are either thef covariances:

vh,k V•h,i ' Vk,i/N (3a)

the standardized covariances:

Vhk 'Z(V hi 'Vh)(Vk~i VY)IN (3b)I

or the correlations:

rh,k " Vh,k/ OVh . V) (30)

A judgement of the effectiveness of the systems can be made by a calcu-
lation of the residual or left variance, or the percentage reduction,
which can be readily obtained from the eigenvalues X by:

PRjul

"More details on the mathematical background can be found in the author's
text (1)76). The covariance and the correlation system bas been compared
in a re-ent article by Rosenv.ngar (1975), and will not be repeated here.
In this article it is illustrated that the percentage reduction varies
largely with the particular system which is selected but the residual
variance (error) is of the same magnitude for the same number of terms
irrespective of the percentage reduction of the individual system.
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H v
3. EIGENVECTORS OF THE WIND PROFILE. First it should be clarified

that under the term "wind profile" the structure of the wind velocity
in the first 10 m of the atmosphere is not meant. The nomenclature
deeignates the wind speed or direction as a function of the altitude up
to about 25 or 30 Km,

The first eigervectors of the wind direction covariance matrix for
the altitude range surface to 24 1m are depicted in Figure 1 for January
and July at stations representative of four climatic zones. We learn
from inspecting Figure 1 that it would be very difficult to find an
"adequate standard function to approximate that particular structure of
the atmospheric direction profile.

In turn, as displayed in Figure 2, the first eigenvector of the

wind speed from surface to 10 Km altitude range lends itself readily
for replacement by a standard function. A linear curve fit would ado-
quately replace the eigenvector' for three stations, and the fitting of
a second order curve may be a successful approximation for Albrook.

SThe examination of the eigenvectors for the surface to 24 Km wind
speed system follows next. Figure 3 discloses that at least for some

1 climatic regimes a standard function such as the Fourier series may be
applicable. This fact is supported by scrutinizing Figure 4 which
exhibits the wind speed profile for Montgomery. As it is displayed, the
major eigenvector comprises over 807a of the variance and resembles a
sine wave. Indeed, a Fourier analysis of the first three sigenvectors
revealed that at least the first two eigenvectors provide largely one
dominant Fourier term. A comparison of the eigenvector and Fourier
system appears to be a worthwhile study.

24 241nj
C14ATRAUROUX

20 2....TiULI0

15 1*............... . ... .
"" 14-

12 - ....... .. ...... -

4- 4.... . _

Figure 1. Fiftt ELienvectore, Wind Direction, CovarLance.
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Figure 4. First Three Elgenvectors (Scaled) ':
• H~ontgSomery, Surface - 24 Ki, y - Vh. .

4. ST•ANDP. FUNqCTIONS FOR THE WIND PROFILE. While empirical
j..•:" polymomiale provide an optiLmum of informati'on in one single term3 stand-

T!

f• ~ard functions have other advantages, One of t~hem is t•he homogeneous,
mathematical background for different collectives, 6.5.,• data from ,

•- diferent climatic regime.. This homogeneity is beneficial for a classi-
'fication of the wind profile in~to categories (see Eusenwanger, 1974).
•:.. -The differences of the percentage reductions between individual order
,• ;: terms at locations from typical climatic• regimes are not partially or
•.i. ' •* entirely caused by t~he di.versit~y of thi.s mat~heinatLoal background.

:' , Because the present goal i.s t~he derivaltion of one charact~eristic param- ,1
-•, ~~eter, the homogeneit•y of the background is of secondary import~ance i

10 10
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Vh, AV + +A1  sin(c + i,)A 21  a i (2% 2±+Vhi ", + AIi C% + P,i} + 2,i '2 h + +2,L)

(5 b)

and the eigenvector system of equation (3b) which had emerged as the
system with the smallest residual variance of the three eigenveactor sys-

4 tems in a separate study.

'S We learn that one term of the ailenvector system with coefficient
B displays the lowest left variance. It should be noticed that A0

or C0 is the first coefficient of the Fourier system, which leads to:

S2 E A ) 2/(h N) (6a)

I h i h Old

or:

a 2 (V ho" C' N)2./(h N) (6b)

N hOi

Consequently the column for one term of the eigenvector system must be

compared with the columns I and a. Attention should be called that

an assumptions

leads to a residual variance which is quite comparable with the eigen-
vector system, Although the system requires that the mean wind speed

profile Vh is known, the prerequisite is identical, however, with the

one in the eigenveactor system. It is self evident that the calculation
of the average value A is a trivial task,

A further reduction of the variance is gained by adding terms in
the Fourier or eigenvector series, Because one term of the Fourier
system has two parameters which can be fitted the columns should not
be compared equivalently according to their headings, The left variance
should be compared between one term of the Fourier series and three
terms of the eigenvector system. Then the fact that the left variance
is lowest for the empirical polynomials agrees with the expectation,

One additional fact deserves attention. If we are interested in
a single-varitte system, the eigenvector system can only be based on

1 be1ause the other coeficients Bj,,, j z 2, are independent of
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B1 1 . Although the Fourier system is orthogonal the coefficients can

be related (see Iesenwanger, •.64),

5. &NO P AMMRAM iou0 u IRYTO -Before asingle-pavameter
system other than based on' AO. can be sximined let us der:ve an an..

lyrical expression for the replacement of the aurrent coefficients of
the Fourier system by an approximation . We Gantj

Vh~i 7 h (AO, 'A + (A 11L +A) i

+ ... (7)

By summation over h and omission of the terms which become sero we
deduce the following expression for the left variance:

Var-8V A. +a 2 A /2 +A(A.+ A - 000() +o /2
L VA 0  'A0  1/ + ' CA 'A

A4 *A/2 + A\(l+ /2 +s (8)-2 A/ 2

(The subscript i denoting the individual observation time has been

'. omitted).

It is easily recognised that for a a 0 and .& a 0 iqn. (8) reduces
to the well-known formula for the left variance (e.g. see Essenwanger,

1976) because the two terms after A /2 disappear. It may be reasonable2htA 2 \ '

thatA> for the dominant Fourier term. For the other term of the

series it may not hold, and instead of a net decrease of the variance,
an increase may result.

A critical contri.bution to the error variance is also made by AO.
It is obvious that for 1401 > A/2 the cosine term becomes negative, and
thus the error contribution of this term may become quite significantunless the amplitude is small, Inspection of Figure 5 reveals that 015

for the system (5b) displays a distinct maximum for its frequency dis-

tribution, and a replacement of the 4.ndividual by its mean 1 may

suffice. However, 01 for the system (Sa) exhibits a bimodal distribu.

tion (Figure 6). Consequently we must find a characteristic parameter
which provides a close approximation of Alp AO and A1. The investigation

in still in progress but tentative results indicate that choosing a
4a single characteristic such as:
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Yi, Vk,i (9a)

Y2j~W~ (Vi r (9b)

Y2 Oi r .":.

r

may succeed. Then P(y), AO(y) and A (y) etc, k and r denote certain

altitude levels, and o• stands for appropriate weights. Tentative results
are depicted in Table 2 which had bean obtained under favorable condi-
tions. We learn that the surface to 25 Km single parameter system would
be competitive with the eigenvector system. It should be considered

0 that an increase of the variance of 25%. is not signi.icant at the 95%
level of confidence for the F-test for N - 200.

it is emphasized that the replacement by standard functions cannot
be generalized for the wind profile from all altitude ranges. For
"example, if our goal is the derivation of a single characteristic for
the surface to 15 Km range, probably the silenvector system is the best
approach. The possibilities of a replacement by standard functions must
be examined in every individual case.

6. CONCLUSIONS. A comparison was made between curve fitting
systems based on empirical polynomials (i.e. sigenvectors) and standard
functions. It was disclosed that the eigenvoctor system offers an
optimum reduction of the variance with a minimum number of coefficients
as expected from theory. It was illustrated, howeverp that under certain
conditions standard functions may perform quite well, and these are
simpler and more economical to compute than eigenvector functions,
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INDUCTION ON A MAPIOV CHAIN

Richard M. Brugger

RAM Assessment Division
Product Assurance Directorate
U. S. Army Armament Command
Rock Island, Illinois

ABSTRACT. Through the use of Markoe chain methods, expressions for Mean••i oundsa Between Failure (MRBF) were found for a class of weapon systems. The

method led to an inductive determination of an expression for the general case.

Following the derivation of the general MRBF expression, expressions for
reliability are obtained (but not a general expression).

STDINTRODUCTION. The problems treated in this paper relate to q ship-
board weapon system of the following type, Some number (a variable) of gun
mounts are connected in piarallel. This parallel network is then connected in
series with a fire control system. sach gun mount has the same number of guns
(for simplicity, we will assume one gun per mount; the resulto are easily ex-tended to some other number of guns per mount).

a Prob (given mount functions successfully) - (1)

q2  l orob (fire control functions successfully) (2)
,1 - , I 1,2o (3)

Once a mount fails, it is considered inoperative thereafter.

Note that we are assuming that each gun mount has the same success prob-
•. ability. This assumption simplifies the Markov chain work somewhat, but,

as we will show later, even this simplifying assumption doesn't serve muchS~purpose in the and.

In this particular application, the interest was focused only on the be-
Shavior of the Sun mounts and fire control. We are therefore not concerned
'with failures of other parts of the system, such as the Suns or the ammuni-
tion, and will, for convenience, assume that these function perfectly.

2. MEAN ROUNDS BITWEEN FAILURE (MRIF). In this application, MOBF will
be defined as the expected ,aumber of rounds, successful and unsuccessful,
ttempted up to and including the first salvo where either none of the
mounts function, the firs control does not function, or both events occur.
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For one mount, it in apparent that MRBT follows a geometrlc. distri-
bution. The probability of a salvo successfully occt:rring is qlq2 . By

.the properties of the geometric distribution, then

l/(lP -8 q 2)()

Por two mounts, a Markov chain was constructed with the following
state definitionsi

51 - one mount out, fire control working

82 - system not working

The transition matrix was as followl.

so S1 52

SO qlq2  2plql(12  1 - E left elements

82 - lq2 I- E left elements

S2 2 -

In the above matrix, the expression "left element@" refers to •matrix
elements in the same row but in columns to the left. One wouid ordinarily, and
correctly, think that in row 92 the one should be in column 82 rather than
S0, thereby reflecting the fact that state 82 is an absorbing state. This
one is shifted to SO, however, to change the problem into one that can be
treated as a first passage situation.

We will use column 52 to bring #bout degeneracy, so we are not concerned
about what the actual values in this column turn out to be, Solving therefore,
for the steady state probabilities in terms of the steady stats probability
for state 82 (denoted P(82)), we have

? (SO) PS2)
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P(S1)2 -I) P(52)

*(I P(82)

For three mounts, the trarnsition matrix beoomes more complicated, so
the simplified Markov chain method (1,21 was uued. The states were defined
in terms of situations, rather than on a salvo-by-salvo basi. The states

80 u system working •

e1 r e mount failed in salvo of first failure

S2 m 2 mounts failed in salvo of fis failure

S3 m system not working

The transition riAtrix becomes.

so 81 82 83
a3p q~q 3p2q q

so - 1 i1 2 * - E lef1t elements

1 1-

82 1 - -
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~IMP

Going through the steps required for solution, as described in 1,2
we obtain

IARBF

'Using the simplified hairkov chain method for 4,5 and 8 mounts, the pattern

RR4BF~

continued, where i is the number of mounts, '

Since only the top row of the transitional matri~x in the simplified
form has any now information as the number of mounts increase, and since
the expected length of the various states (in the simplified Marltov chain
sense) was determined as the number of mounts increased, induction was
considered,

By considering the result true for k-I and considering what the
mtvueture of the top row of the transitio~n matrix would be for k
it was seen that

k-ii
i lq

MRBF -JL 4-j

I-q q2 qq (-q

I-qlq2
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After obtaining this general solution, further relection was given to the
problem. Because of the nature of the simplified Markov chain transition
matrix for this probWt (whereby all of the information of interest appear-
ed along the top row) i, was seen that a direct algebraic induction solution,

f without any use of Markov chains at all, was possible.

Finally, it was seen that the problem was actually much simpler; even alge-
braic induction was not necessary. This was determined as follows. Let us

Y" imagine that an observer is stationed by each mount, and that each observwr
A' will remain by his mount for an infinite length of time (or for an infinite

number of trials from the situation "everything working" to "system down").
: •Each observer records how many rounds are fired from his mount until his

system (the fire control and his mount) breaks down. His syscem is equival-
ant to a one mount system, as is each of the other observers, so, over the
long run, the average number of rounds between failure for his system will
be the same as the MRBF for one mount. For several mounts, than, the MRBF
for the system is just equal to the sum of the MRBF'u for individual mounts

4 (whereby our earlier simplifying assumption that all mounts have the same
MRB? is seen to be unnecessary). While the common fire control suggests de-
pendency, the dependency exists only for each trial from "everything working"
to "system down"; it does not exist for the system TMR,.

From the above, it is seen that almost no mathematics was necessary for
solution. At the same time, the mathematics bears out the result obtainedi• ~through the purely intuitive approach just described.

2. RELIABILITY. For this application, the reliability for an N round
mission will be defined as the probability that a mission of N successful
rounds will be accomplished.

For one mount, we have a simple geometric distribution, and the N round
reliability can be expressed as

R = (qq2) (12)

For two mounts, let ko be the number of salvos that would be required
if the Nth successful round were fired in the k'th salvo and no breakdowns
occurred in the first ko-i salvos. If N in even, k.1 N/2. If N is odd,

ko • (N+1)/2.
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After some investigation into how the problem coul~d best be alge-
braically treated, it was found that the best approach would be one where-
by any necessary summations would be indexed by the number of successful
fire Qcntrol salvos. Thus, for two mounts, N even, we have

N Nk (13)
N q2 2pqq 2k-k 0 +4

which, for q2 < 1, is found to bmk0 Nl

Nk 2 q2  (14)'Fko + 2pq'll 1;aql

For two mounts, N odd, we have

N N+l ko0 2p N ko + E 2p q N k (15)!! 2' 1N 1 q22 +o +1 1 lq

which, for q. < 1, is found to be

k +1 N+I

q N+lq 2k° + 2p qq 2  + 2p qN N 2 -q2 (16)

For three mounts, the problem becomes slightly more complicated. Let us
make the following definitions for ko

if

N = 0 modul 3, ko MN/3 (17)

N = I modulo 3, ko = (N+2)/3 (18)

N2 modulo 3, k0 -(N+iL)/3 (19l)

The following probability of mutually exclusive events are defined.

1. P(O) is the probability that the •'th successful round occurs on
the N~th salvo.

2. P(OA) is the probability that the N'th successful round occurs after
the koth 3alvo, but no mount failures occur in the first (k.-1) salvos.

3. P(I) is the probability that one mount failure occurs in the first

(ko-l) salvos, no more failures occur, and the N'th successful round occurs
after the k.th salvo.
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4.fo and i the rbblt that two mount failures occur, at least one>4/[ r sa vobefo te the k~ th s alvo, an d th e N'th su~ coe sful rou nd o ccu rs after k~th .

Y R P(O) + P(OA) + P(I) + P(2) <(20)

When N 0 modulo 3

N X/32l

S:; •(o) - ql '"; (21)

When N 1 • modulo 3P()aq 1 q (N+2)/3(1  P3 (22)I

When N 2 modulo 3

X N-2 (N+1)23) 3

(3O) Q +q3) qlq ) (23)

SWhen N 0 1 modulo 3
N - 3 (N - 3 )13 { (3 pl aq2 )( 1 _ 2 ) q

P(OA) q q a2 
1

2(22

+ ( 3 p 2 q~ l ( 2 4 )
SN-I (N+3)/2C 2

3p-'i.1 '-_2 - 1l + Plqlq2) <

:' Wh•en N 1 modulo 3]

I
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When 3 * 2 modulo 3

XO) * -2 (N-2)/ 3 , 12 -l

q1  q2  
3[3~ 1  2 qq 2 ) A

N (N+4)/3 2 (2)
3q~q 2  P, (26

Let S(N/2) be the smallest interger larger than or equal to N/2
Then

S(Ns2) N-2k 2k k S(N/2) N-2k+1 2k k
/ P(l) -3P q q2 + E 3 pq 1  q qz' (27)

k o , +1 1k 'k +1 .1

If k0+1 N 1/2 the above generalizes to

q, k_0+1 _ s(N/2)+l

3p 1(q+ )- 2  
(28) 

+2

for q2 < If (ko+l) > N/2, P(l) does not exist (the case for N small).

P(2) E 32Ckq+l Nk (29)

where C indicates the number of ways two numbers can add up to N-k 4
given t~e miximn of these two numbers is less than k.•..For s(Nl2)• k a Nq

C N - k + l (30)

For kc+1 k S(N/2) - I

k *(-N +3k-1) (31)

kI
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S" Then

3p2 - N Nk

-kwS(N12)1 k÷1 1

-3plq 1 ( Z (N k I+2)q2  3
S(N/2) 2(2

N N .
3Pql E (N +2)qC2  E (k + )q2}

., S(N/2)

' Treating the right hand term within the brackets as the mum of derivatives
(being equal to a derivative of a sum) the above becomes, for q. < 1

S(N/2) N+l

3p 1q~ {(N + 2) q2 k k

E- (N + ,)q2  E (N + 1)q2

•, i--q 2)
•, S(N/2) 101+

. 1 m q2 (33)

I - (N + 2) + (N + 1)q 2+
P2

&q

!• •, xI - (s(N12) + I)q••• + s(N/2)q•••÷
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i~

In a similar manner, we find

•• S (N12)- l
2 N k

N + ilk31 1)3p~qlq21ko+l-.

k0+÷ S(N/2)
2p 2 N (N + 4) q

•( S(N2) +}S(N/2 2
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MARKOV AND PATH DEPENDENT PROCESSES
APPLIED TO CONTINUOUS SAMPLING

PLANS IN TANDEM

David L. Atp

Naval Weapons Center
China Lake, California

ABSTRCT. A continuous sampling scheme, consisting of two generic
Continuous Sampling Plans (CSP) in series, is analyzed. This serial
arrangement is used for the attribute sampling for two different indepen-
dent characteristics of items in a given production run; the output from
the first plan forms the input to the second. Using standard one dimen-
sional Markov Chain (MC) models for the generic CSP's, the serial CSP
model is shown to be equivalent to a two dimensional (or second order) MC
wherein the state of the second component is directly dependent on that of
the first.

The ergodic properties of the marginal distribution of the second
component are analyzed by using 1) the ergodic theorem applied to matrix
valued random variables, 2) a nonstationary MC approximation to a path
dependent process, and 3) direct products of transition matrices constrained
by the dependence mentioned above. In the latter two approches, the MC'a
are shown to be aperiodic and (strongly) ergodic; either one can be used
to show convergence of the path dependent process. Taking the appropriate
limits, as the production run becomes infinite, it is proven that the
limiting probabilities for the second component are independunt of those

of the first.

Using direct products, the analysis is extended to the dame of three
or more CSP's in tandem. Under the additional assumption of a separable
initial probability vector and for n a 2, the direct product MC, which is
ergodic and stationary, is shown to be equivalent to a finite sequence of
n MC's. In this sequence, the first MC is ergodic and stationary; the re-
maining MC's are (strongly) ergodic and nonstationary. Comparisons are
also made with other naturally arising multicharacteristic vampling plans.

1.0 INTRODUCTION.

1.1 Conti Samplin Plans. Given a production line of items, a (one
characteristic) Continuous Sampling Plan (CSP) consists of two or more
phases of attribute sampling for an item characteristic directly from
the line. In at least one phase, the sampling frequency is zero with an
exit occurring only aftur a fixed numbor of items are found to be conse-
cutively nondofective (screening phase). The phases are always connected
is such a way that each of them is "positive recurrent" for an (abstract)
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infinite production run. Moreover, the number of phases is finite and
an exit from any one of them takes place after a finite number of produc-
tion units with probability one.

CSP'u are modelled by Markov Chains (MC) which, because of the phaseI structuring, are finite, aperiodic, and'irreducible, The plans and their
MC models are discussed at length in References 6.2 end 6.5. The simplest
of the CSP's, CSP-l, along with its usual MC model, is described in
Chapter 2.

1.2 Origin of-TandemCSP's. In the past, CSP-l has been used in a serial
manner to sample for eight different characteristics per production unit.

In practice, the characteristics were sampled for at successive stations
along the production line. It is this type of sampling that is generalized
and modelled in Chapter 2 and further analyzed in the succeeding chapters.

1.3 Contnts of Paper. In Chapter 2, after describing CSP-l and its MC

model, Semi Markov Chains (SMC) are introduced and utilized to simplify
the MC model in two ways: the "classical" way, driven by a particular
functional, and a second way, motivated by the serial sampling plan and
the idea of a controlled Markov Chain (MC). Such a SMC simplification of
a MC is called SMC reduction (see Reference 6.2)., The description of
(2)-serial CSP-l is then given followed by a second order MC ((2)-MC)
model for it. The (2)-MC model is based on the assumption of independent
characteristics.

In Chapter 3. the second SMC reduction is used in developing two

similar approaches to the simplification of the (2)-MC model. The major
connections between the resulting models are also brought out. The second,
path dependent model is approximated by a strongly orgodic nonstationary
MC. In Reference 6,2, it is erroneouely stated that this approximation
is equivalent to the (2)-MC. Thus, one of the major purposes of Chapter 3
is tu clarify the assumptions made which make the nonstationary MC differ
from the (2)-MC.

In Chapter 4, the lon~eat of the chapters, a third method is given
which utilizes the concept of the direct product of matrices. For n> 2,
(n)-.sezial CSP-l is also handled by the same techniques and the CSP-l
restriction is eventually dropped. For (n)-serial CSP-l, it in also
shown that its direct product MC, which is stationary and ergodic, can be
separated into n MC'.. The first of these MC's is also stationary (and
ergodia) in contrast to the remaining ones which are nonstationary (and
strongly ergodic). Furthermore, the latter n-I nonstationary MC's exhibit
structures which are essentially different from the one exhibited by the
nonstationary MC in Chapter 3L Of primary interest is the marginal Average

Fraction Inspected (Art) functional for the last plan in tandem. This
functional is compared to the one which results from use of the plan by
itself. The treatment of other reasonable nonserial multicharacteristic
sampling plans concludes the chapter. Chapter 4 contains all the major
results in the most satisfactory form,
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Chapter 5 concludes the paper by summing up the major conclusions
and theorems as well as suggestilng some further possibilities for and
modifications uf multicharacteristic sampling plans.

1.4 CGlss__ny. In References 6.1, 6.2, and 6.3, the clearance number, which
characterizes the screening phase of CSP-l, is denoted by the capital
letter I., However, in this paper, "I" might be confused with the identity
matrix and thus small i will be used instead for the clearance number.

Henceforth, references will be denoted by numtbers in brackets (e~g.,
"References 6.2 and 6.3" will be written as [6.2,6.3]. Common abbrevia-
tions and notations are given below.

*x r columns and m rows.1 ia.e,] - almost everywhere

pv w probability vector (non-negative entries with sum 1)
CSP - Continuous Sampling Plan

FI(N) - Fraction Inspected out of N units

AFI(N) w Average of Fl(N),

AVIn(-) - Marginal AFI(m) for the nth plan in a (n)-serial CSP

MC - Markov Chain; BMC * Semi Markov Chain

M(.) W MC process; X(') • SMC process

A D B " Direct product of the two matrices

Aln "Transition matrix of (n)-serial CSP-l

1.5 Acknowledfment. Mrs. Leah K. Jones deserven full credit for the
excellent and expeditious typing of the paper an well as for the drafting
of some complicated diagrams and the proper rendering of special technical
symbols.

2.0 BACKGROUND,

2.1 CSP-.. This sampling plan, the simplest of its type, in characterized
by one varlable and two parameters. The variable, p, is the probability
of finding a defectivo itien (characteristic) under the assumption that the
product flow forms a Bernoulli process. The two parameters are i, the
clearance number required to exit from the screening phase (abbr. sc), and
f, the sampling frequency to use during the unlimited sampling phase (abbr.
uls). Thus, whun necessary for clarity, a particular CSP-l will be written
explicitly as CSP-1[p; i,f], The black box description of end the MC model
for the plan appear in Figures 1 and 2, respectively.
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Figure 1
Block Diangram of CSP-l[p; i,f]

start~
i nspect ± consecutivesape t

E100% units defeat free freq. ,

OP if defect is foun~d

First box m screening phase (9c)
Second box - unlimited sampling phase (uls)

* Figure 2

Markov Chain Model of CSP-lfp; ±,f

< P I I- -,0 2 -V

O q q q q q*

I qf I_

p - Probability of defective; q 1-p
i-Clearance number *

f - Sampling frequency; v -1-f

Hi MC state of MCI 0 A j i-l

81 - nspecion M sta1 ~of
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2.2 Semi Markov Chains, Semi Markov Chains (SMC) can be used to simplify
CSPis and, spacifically, CSP-l. Below, a brief exposition of SMC's is
given. For further details, see (6.2, Appendix of 6.3, or 6.6].

?I or discrete (and integral) t k 0., let X(t). be a Piscrete) stochastic

process, Then we have
•2! " _efinition 1. X(O) is a finite Semi*Marker Chain iff its state space

in finite *nd and following relation7hij holds

Prob[Y(n), W(n)IY(im), W(m); 0 1 m 9.n'-11

"Prob[Y(n), W(n)jY(n-l), W(n-1)]

where Y(m+l) - X(tm+.), T(m+l) a W(m+l)-W(m) is the time of sojourn in state
Y(m) from its entrance until its exit to state Y(m+l), t(M+I) in a partt-
cular realization of the random variable W(m+l) which in turn is the total
time to (m,+)it transition, and Y(m) 9bY(m+l) for all m.

i For further reference, we have

Definition 2. Let 4, k be in the state space of X(-). Then

Sa. The (defective) pdf of the time to transition from state I to state

qk(t) *.Prob(X(t) - k; X(L') Z, t t t'> 0Ix(O) - ±],

f or Z k and is otherwise zero.

b. The probability of starting in state A at time zero and being in
state k at time t is given by

PF,k(t) - Prob[X(t) a kjX(O) - A1.

SMC. In Definition 1, the prvess Y(,) is a MC called the embedded MC of the

.MC. Letting HO be the Heavisldo sequence, the transition matrix for this MC
is

"where the asterisk denotes the operation of convolution. If in Definition 2,
there should exist at least one state k such that Q%,k(') is not identically
zero, then self transitions are possible without be ng recorded by the SMC
apparatus. In this case, the concept of a Markov Renewal Process (MRP)

must be used. Referring to Definition 1, teMRP would be the process (X(.),

W(.)). In the rest of the paper, we will be dealing with aperiodic, irre-
ducible, and stationary SMC's. The definitions of all these concepts parallel
those for MC's, For further information on MRP's, types of SMC's and their
relationships with their embedded MC's, see [6.2, 6.3, or 6.7].
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We finish this section by stating two theorems needed later on.

Theorem 1. Given the SMC X(.), we have

PL,k(t) " QZ,j *Pj,k(t) + (60,k1)jk(t)

vhre ~te ,k(*) and Qa.j(.) are defined in Definition 1, 61,k is the
Kronec:ker delta, and

Jk(t) -O*( - qk,.)(t)
•!"t +~~or 80(t)1 " 80,: +++t

Proof. See (6.2, 6,6, or 6.71)

Theorem 2. Given the SMC X(.), the following limit holds.

Ok~k
Lim P•,k(t)

. where e - the unique eigenvector with eigenvalue 1 for the embedded MC and

a k' the mean time of sojourn in state k.

Proof. See [6.2, 6.6, or 6.7].
!!:• ~2. Simplification,. of CSP-1. The first simplification in driven by the :

Fraction Inspection (FI) functional which is given in

Definition 3. For the model of CSP-1 appearing in Figure 2, che
Fraction Inspected (Fl) functional is

71 (N) .1 - C(uls)(t)
two

In the equation, N m the total number of units which have pemsed the in-
spection station in real time, v a 1-f, and

Sf1, if X(t) is in ul
+i+ ~~C(uls) it)-,.

(u;s * 0, otherwise

Taking the conditional average of FI(N) gives a function defined in
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_&••FDefinition 4. The Averaeraction Inspected (AFI), for 1he first N
units and starting in either MC state HO or in any state under equilibrium
conditions is

AFI(N) = E[FI(N)IM(O) HO]

-& E[VI(N)], also

where M(.j is the MC process, E[.] the expeotation operator, and e the long
run probability vector (pv).

Concerning the first simplification of CSP-l, we have

Theorem 3. Letting sa a 1 and uls *2 (see Figure 2), we can construct
the following SMC whose states are defined in terms of the z transform
[6.1, 6.2, or 6.11].

• .i States: (1, ý12(z)) and (2, Q21(z))

where Q12 (z) , Q2 z- y= pq

8 fp, and 0 w 1-6.

Proof. See [6.23.

Corollary 1. The unlimited sampling phase of CSP-1 can be reduced to
a MC state Si with a geometric pdf.

LProof. From Theorem 3, the.transform of the function Q21(z) is a
(nondefective) pdf which can be written (in the time domain) as

QSi,HO(t) - 60tql

In the above equation, HO is used since the application of this Corollary
will be to the MC model.

Corollary 2. Starting in state 1 at time zero, the FI(N) functional
in Definition 3 has a limit as N approaches infinity given by

Lim FI(N) * 1-vy2  [a.e.]

.AFI(w)

Proof. The first equality follows from Theorem 2 applied to the SMC
constructed in Theorem 3 and the ergodic theorem for functionals defined
(or, in this case, definable) on SMC's. The second equality follows from
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Definition 4 and the facts that "M(0). Ho" in equivalent to "X(O) 1
and E(C2 (t)IX(O) - 1] - P1 2 (t),

The second simplification will be used in Chapter 3.

Theorem 4. From the MC model of CSP-1, a SMC can be constructed with
the following states (again in terms of the a transform)

States' (a, &ab(z)) and (b, Oba(z))
where

^ 4cd(x),4da(x)

Qab(9) -- and Qba(z) U 
4 d() da(')

The transfer functions for the intermediate states c and d are

ii ~~~cd(z) - ~) and Oca(z) n (j)(-p (z ~
Proof. Let a- HO, c m (IHiJ, 'for 1 t j s i-1, and d mSi. Then a and

d have geometric pdf's and are t us (trivial) SMC states. From [6.21, c
is a SMC state with the given transform, UIing a routine combinatorial
argument, we have (dropping the argument z)

4ba ýcd-4da( Oac ca

which reduces to the given form by summation of a geometric series for
I~hi
2.4 MC Model for (2)-Serial CSP-1. We consider two (different) CSP-l's in
tandem- CSP-l [ ik! fk] with MC and SMC states (tJk, Sik) and
(ak, bk), respectively.

The (2)-MC model of (2)-serial CSP-l is based on the assumption that
the two item characteristics being sampled for are independent. Following
the practical case discussed in Chapter 1, two item characteristics are
sampled for at two successive stations along a production line, according
to two (different) CSP-1 types. If an item is rejected because of a de-
fective first characteristic, then the second characteristic is not sampled
for. Thus a transition to MO1 occurs in the first plan but no transition

at all occurs in the second plan for the given operational time increment
which the item represents. However, if the item passes muster for the
first characteristic (i.e., the item is inspected and found to be nonde-
fective in the let characteristic or, because of fl, is not inspected),
a transition takes place in the first plan to a state other than HO1 (or I
al) and the item moves on to the second station. £hus, in this latter
situation, a transition takes place in both MC's fnr the specific
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operational time increment generated by the unit, We translate this view-

point into the (2)-MC model given in F'igure 3,

Figure 3

Second Order Msrkov Chain Model.for (2)-Serial CRP-l

Statee: Qki, U2), (kl, k2), (ill k2),

for 0 & kj A ij-i, j u1,2>

Transitions: ((kj)+i may~be ill j *1,2)

StataState Probability

*I(il, k2) (ill (k2)+l) 8024(ki, 12) OF ((kl)+l, 12) q102'

(kl,'k2) (Oc.1)+l, 0)

(kl, 12) ((kl)+l, 0) qI6 2

W.~x (0x) PI

(ill X) (0, X)

(x *12 or k2).

The result is a rather complicated 2 dimensional lattice. The re-
maifting chapters reduce the study of this model and, more generally, similar
models for (n)-serial CRP-i's and functional. defined on them to a manageable
systematic analysis with various degrees of success. To help in thia analysis,
we fix some more idea. in two more definitions before leaving Chapter 2.

f ~~Definition 5. A ýn)seisll2an is the same as a (n)seialCUP and
consis~ts of Sr arranged in tandem such that the output of the jth plan
in the input to the (J+l)st plan, 1 A j A n-1. For a given operational time
increment' given by the movement of a production unit through the sampling
stations, a transition takes place ini the CJ+l)st plan onl/ if no defects
are found in the preceding j plans. Moreover, if a defect is found at the
Jth station, no transitions take place in the consecutive plans after J.
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However, the interpretation of "virtual transition" for "no transition" will
also be used when convenient to do so. If only a particular type of CSP is
used, the serial plan will be called a (n)-sprial CSP-'1tye'. If the CSP's
are mixed types, the plan will generally be written out: (CSP-type(l))- . . .-(C S P - t y p e (n ) ) . .• .. ..

DafInition 6. A mmlticharacterisetid pat (MCP) will be used as a geneic

term w-ile a non-CSP MCP will be called a variant MCP,

3.0 TWO APPROACHES TO (2)-SERIAL CSP-l, The two approaches are given in
Sections 3.1 and 3.2. The connections between them are given in Section 3.3.
In addition, a and b are the SMQ states appearing in Theorem 4 for the first
plan, A2  is the usual transition matrix for the second plan used alone,

and 12 is the identity matrix of rank i 2.

3.1 Average Transition Matrix, Given the (2)-MC model for (2)-serial CSP-l,
we first define the matrix valued characteristfc functional in

where X(.) is the SMC variable for the first plan and M2 (.) is the MC vari-

able for the second plan and 2) Projt(w) be the projection to the first j
component at time t. Then the matrix valued characteristic functional is

A2V if Projt(w•) s b
Ct (1 M

Using ttý idea of a controlled MC (sea [6.12]) and Definition 7, we canprove ;

Theur_ m 5. As N approaches infinity,

~ ~ Ct M Oa 12 + *bA2  (..
tul

Proof. We can break the matrix valued random variable up As

C, M) st(w) 12 + bt(w) A2

The functionals at(.) and bt(.) have the obvious definitions: et(w) M 0 or I1 iff Projt(w) a b or a, respectively and bt(w) l-at(w). Then the above
average sum can be similarly decomposed. The theorem then follows from the
definition of the (2)-MC model given in Figure 3, the SMC reduction of CSP-l
in Theorem 4, and the argodic theorem for functionals defined on SM's.
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Using Theorem 5, an average operator can be associated with the

SD.flnjtoq 8, Given the RHS of the limit in Theorem 5, the A
STan d ?4trIx for the second plan is

92 12 abA 2
4A 2

Clearly, for the second plan, the expression for A2 can be looked

upon as stating that, #in the long run, 12 is the (virtual) "transition
matrix" (lO0)ma% of the time while A2 is the appropriate matrix for the
remaining (lO0)b% of the time. To elaborate somewhat, 12 can be interpreted
as the "Stop" matrix. That is, when 12 is employed, no transitions take
plac• as far as production unit time is concerned, A possibly better inter-
pretation is to consider (virtual) transitions as taking place according to
the identity matrix but to define the relevant functional. only for transi-
tions which occur according to A2 . With this latter viewpoint, we then have
a path dependent nonstationary process (see Section 3.2).

Given TV. we have

Theorem 8.

Lim (X2k L2

-. where L is the usual long run matrix for the second plan. That is, the
columns Ire all identically equal to the long run probability vector (pv)

Proof.

2 (j c,(12- A2)~ A2C (J)

However,

kLim A L2 (2)

Therefore, Eq. (2) and summability theory (6.91 imply that the limit exists
for Eq. (1) and is L 2

Theorem 8 shows that the use of the avetage matrix gives the same long,
* run resultb that use of A2 does, Thus, using this first approach results

in a marginal APl(m) which is the same as that which would be obtained if
the second plan were to be used by itself,
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3.2 Path Dependent Model, The model is given by the matrices in

3,SjDef inition 9, The dpendhAjSjent maries for (2)-aerial CSP-l is

t

A(t,w) -I)T (ak(w)1 + bk(w)'A' 2.S( "1
where 8k(*) and bk(') are defined in the proof of Theorem 5 and the matrices
are defined in Section 3.0.

*Let the conditional expectations 93I.X 1(0) w and R[,Isl]* dps1Ste
on thi above matrica to yield matrices Aa(t) and p(t), respectively. Also
let Upt ( .,'p,,0), i times, and Xg be an arbitrary pv with i2 entries.
Then, a little reflection shows that the (2)-NC model with initial pv ,
Ell t ,Zh or [,1, 121 in equivalent to using Aa(t) or A,(t), respectively,

"Using the equality "bk(,) - l-ak(,)", we can rewrite the matrices in
Definition 9 an

t

A(t;w) (Aw (12- A - +A (A3)

Multiplying the RHS of Eq. (A3) out, we get

A(t;w) (&1 -2 -----at) (12 A 2)!i..i+ --- + (Z'a aj.-.j)( 1  25 A
-~7' A2 aj 21aA )tl At(3

S12- 2 A is,

•i:In Eq. (B3), the arguments of the aj •s have been dropped for notationaml
•ii convan~ionce and "I"'" is the restictr€ed summation obtained by remquiring that .

From Eq. (B3), a recursive scheme can be developed, For a (complex)
polynomial of degree n with roots rj (j " 1 to n), let Sk(rl ,---rn) be the
kth symmetric function of the roots (associated with the variable of power
n-k). For simplification in using Eq. (B3), define

*kW -Sk(al,---,An),

*al is SMC notation for ai-
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Thus, f or example,

'1 fl , Dn *Z ji and Dn ITf[
Since ak(w) - 0 or 1, we can consider the RI-S of Eq. (B3) as arandom matrixj
polynoi•ial over the-binary field. Using.the symmetric function, we have

[ Th~ 9.With the special random symmetric functions defined above,
vehAav a recursive relationship between~ the coefficients of A(n+l;w)' and,

A(ntw) where we treat (12-A2 ) an 'T' and A2 as the polynomial indeterminate.

Proof. The recursion is obtained by expressing A(n+lMi) as A(o,n',w).A(nn44;u and equating coefficients, Explicitly, the recursion is given by

Dn~l +1 D

Df+lu Cm+l n Dn+ D R1 . + An.1 DR-1 1 A k A n

In particular, I
Dns

Eq. (B3) is more useful for calculation of Eq. (A3) because of

Proposition I.

E(::aj~aa...;:.a:IX(O) *a]

'Proof, Since state a has a geometric pdf,

Paa(j) *Prob[MI(j) w HOIM 1(O) - Hol

where' M(,) is the MC process for plan 1.

Corollary I, For the first plan, letting E[.tX(O) - a] - Eaf.], we have

za "i] "ZPa.(I)

Proof. Proposition 1 and definitions.

L , With the same conditions as Corollary 1,

ECDIj+l+] " 'a("+) + sajfI~

a Ea(lj) + Ea a[D aon+ijOi1) (C3)
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Proof. Theorem 9 and definitions.

Eq. (C3) is, in general, tedious to evaluate, As this equation stands,
the probability of the union of k overlapping events would have to be evalua-
ted, Thus we try an approximation such that Eq. (C3') holds:

-a CD Ean4.I÷DkU, t D'o 1 ...n+l.

-However, Eq. (C31) is equivalent to the assumption that the random matrices
A(J,J+l1w) are independent. Proceeding with this simplifying assumption, we

Sget the following nonstationary MC,(A (k), whereMC(A() -hr
A'(k) - Paa(k)12 + Pab(k)A2) (D3) j•.

Concerning this MC, we have

Theorem 10. The nonstationary MC whose matrices are given by Eq. (D3)
is strongly ergodic, Its limit is expressed by

n
• Lim T A' M) L 2

where the strong convergence is in the sense of the norm supremum (or any
norm equivalent to it in finite dimensional Euclidean space). J

Proof. Each of the matrices has the unique sigenvector a2 with eigen-
value 1. From [6.10] and Theorem 8, the nonstationary MC is strongly ergodic
with the above limit since

Lim A' (k) *2

where the limit is taken with respect to one of the above norms. Ij

The nonstationary MC in Theorem 10 is the approximation which is
erroneously stated to be equivalent to the (2)-MC with the expectation
operraor E [.] T To get some idea of the relationship between Ea[Alk,w)]
and A (lk1 . we prove L

Progosition 2. Pa.a() is a monotonically non-decreasing function, |"!

Proof. Recalling the stochastic sequence W(,) from Definition 1 and
letting Tab be a sojourn time in a until exit to b, we have

APaa(n) -. Paa(n+l) - Paa(n)

M"aQ(n) + [W(a) + " (1) n)

ab Jý



But the expression inside the summation sign in Eq, (1) in

-P[Wj(a) + Tab - n and Tab'O 0] S 0 (2)

Frmt (1) and (2)0 the Proposition follows.

Co~ro 3n . The coefficients of the nonstationary MC are all less
thaor equal the corresponding ones of the expected value of t•he path
dependent model,

Proof. Abbreviating Paa(') by P(.), Propoeition 2 shows that

PQj1 PQj2)ew.....P~j) I(1PJ-1--~-sl

Each side is a general. term of the two models, the LHS coming from the non-', stationary MC model and the RHS coming from the path dependent one.

3,3 Connection•, The transition matrix A2 in Section 3.1 is clearly equal to

strong-ur A' (k).
"k

The connection between the nonstationary MC and the average of the path do-
pendent model has already been examined; the former is obtained from the
latter upon assumirg the independence of the one step random matrices. Non-
stationary MCWe also arise in Chapter 4 but they are more related to the
SMC reduction in Theorem 1 than to the reduction given in Theorem 2.

4.0 DIRECT PRODUCTS AND MULTICHARACTERISTIC PLANS. In this chapter Ak will
denote the transition matrix of ;he kth CSP in a serial plan. The plan
variables and parameters will also be indexed in the same manner (eag,, Pk,
qk, fk, and ik for CSP-1). Ik will denote the identity matrix of rank ik.
We will use properties of direct products without detailed comment (see[6.83).

4.4 M2-Serial CSP-1. The direct product of two matrices is given by

Definition 10. Let A and B be nxm and rxe matrices, respectively. Then
the direct vroduct of A and B is the nrxms matrix

&I F B A --- I .A
A 02'

amiB am2B -- ! J
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(with scine abuse of notation in using B rather than its entries), A direct
product is sometimes referred to as a Kronecker product in the case of
matrices and ati (algebraic) tensor product when the factors are explicitly
lipear operaLurs,

umdGiven the (2)-MO model in Figure 3, Chapter 2, Definition 10 can bea4
S uthed to express its transition matrix in a compact form which is given by

tethird equation below, By construction, the (2)-MC matrix can be written
4' an

p,12 qiA 2  0 --- 0

P112 qIA 2--- 0

A12
P112  0 0 -~A 2

d11 0 0 ---P1A2  '
Using some simple propertios of direct products,,we can rewrite the above

11mti mP 112  0 --- 0 P1A2 0"'-0

Pl1 0 -- 0jA --

PuA2  0j20 -

PIA 0 q ,A~-.-- 0
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. ... . . ... ........ . . . .

"vhere

10 --- 0

.C "(p -" (an i1x il matrix)

1 0--- 0
fj 0-- 0

Concerning Al2 we have

Tbeorem 11. A is aperiodic, irreducible, and finite. Morker, if•4 ~ ~ U4 i heon nrobability ve ctor (pv) of A4,• 1, 2, ýhen' 1 _.12 'a
tes long run probability vector (pv) o f A1.2.

Proof, 1) Refer'to Figure 3, Chapter 2. The state (0,0) is aperiodic,

It is'straightforward but tedious to verify that (0,0) can be reached from• any state and that from (0,0) any state can be reached. Thus the matrix
is irreducible. Being irreducible and havinb one aperiodic stats (0,0)
imply &periodicity for the matrix. Finally, it is trivial that the matrix

is finite since its direct product components are. 2) To prove the second
part of Theorem 11, we use the fact that a finite, aperiodic, and irreduci-ble MC matrix has an unique eigonvector with eigenvalue 1. By assumption,,

a is unique,

where 111112m Iv,1 and j 1,2. Thus we have,

+ (ic 'Z_)(AI 0 A2)
:~~~~A +_ e,• I, ,÷., A,) a2 A2 •

Moreover the entries of A, eS are
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positive and add to one bY the definition of the direct (or tensor) productof two vectors (of course "el ®e2" requires, by Definition 10, that ai beix and 2 be 1 x 2), The uniqueness of a long run pv finishes the
proof.

We now turn to the investigation'of the marginal AFI(-) for the eecondplan,

Th Uem_1. For the second plan in ( 2 )'-serial CR-,1 the marginalAF()t ie by

Arli~s) - 1 - V24Ebl e02i

(Mb2. is used a. shorthand since no SMC redaction is used in the proof,)

by definition.

.1-Al 2 ( -) - Lim j C(j,i 2)(wjw2;k)S~N

[.a.)], by definition,
ii

" V2Qt 1 6aj 2

Except for three comments, the theorem is finished.
•'• if JLampling begins with state (0,0) with probability one or with*v - l 2 , then operating on the characteristic functional,

C(J-12)(W1,W2;k), by E[.181, where

S=M20 - (0,0)" or If a a" allows the dropping of "[a,e,]•' Secondly,
Wk • ProJ ), k - 1,2. Ftnhlly, the definition of the functional impliesthat we are considering the identity matrix as a legitimate, but virtual,transition matrixi this viewpoint has been mentioned in Definition 5 and
after Definition 8, Chapter 3.

We see from Theorem 12 that the formula

1 - V2Lb1 e2i 2

Is the average number of units which are actual], inspected for the second
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characteristic. Thus, for the-second plan in tandem, "not inspected" is

not equivalent to "sampled" because of the control exerted by the first

plan on the second (recall the two interpretations of the identity matrix

in Definition 5). In other words, 1-AF1 2 ( ") is the average fraction not

lj inspected whereas 0-AIT(m, P2 ;i 2 ,f 2 ) is the average sampled (equal to

V2021d-.

' efore leaving this section, an alternate "proof" of Theorem 11 will
be given which will, in addition, give some insight into the transient
behavior of the (2)-searial CSP-l model. If a (2)-MC pN can be expressed

as the direct product of two pv's (one for each plan), then such a pv will
be called pearakle, Given tstarting pv (initial pv) is

j . separable, define the pv's X0 and _. an the initial pv's for the first and
second plans, respeutively. DMfining a vector as a u =S•qS iff each
of its eartries is unity, he deine • as the 1 x ik unity ector,

A k - ,2, and ark t as its tra spose it unity vector). Let ur and
bsathe vector: (Y A3> respectively (if th% lanin5 is

c•.bo• We won+t use thil"nootaton vt 'oa'ow (columQ, vector corresponding

to the column (row) vector v). Thant ,

so ul Io

0 *l

!•, •(•.a~ t(xl• z1) . *ox9 + -,v_

i ~end j1ust

II

eour notations, the result is an outer p t which is a matrix.
L Ul (20 X') OXP (12051

Xi 1) itY -- Xi 1%



*"O (so I2 + (-go) A2 ,)

However, (x@) . aQ. " x1 and a(_at (?E] yl) X1

which, combined with the above, gives

Repeating with x 0 ,

~2 ~~2 and X,2 yl. (91 12 + (1 S)A 2)

wheroeI g, l-vjx1, In general, by inductioan,we have Oka

xr+- ur~l and yr+l -9 dY ( 2 + ) A2)

where g l-v" 1 1 . Thus, for a separable pv, the first plan's pv propagates
according to the plan's own individual structure, In contrast, the second
plan's pv propagatos ds a nonlinear function (because of "l-gr") of vectors
(pv's) arising from both plane and depondo.nt on vj, The relevance to Theorem
11 arises from the observation that for all practical purposes, any pv for
the model nan be considered separable even though theoretically, there are
nonseparable pv's whose transfinite cardinal number is equal to that of the
set of all linear functions from the unit interval to itself (loosely speaking,
there are an infinite numbar of ways to factor a real number). Itn pa"ticular,
11.W 2, in not only separable (by construction) hut self replicating.

The connection with Theorem 11 will be completed by sihowing convergence of
xFr and yr to a, and j., respectively. In the process, we will see that the
model can be decomposed into a stationary ergodic and a nonstationary strongly
orgodic'MC thereby providing a link to the results of Chapter 3. 'rom Chapter 3
and [6.10], the matrix

• r r"!

jul 12 + (l-sj) A2)

• " A2 (1, r)

strongly converge. to L2 since

Lim A2 () (-VM2i 1) ' + (9`2) A2
, - (AtX(1)I 2 + (2-AVI(l))A)

(AP
(142 +2(....MA

A2 , AVI(1) ,- AFI(o,,pj-l,ij )' .,

*.\ndfl2/ (strongly) converges to L2 by the usual summability arguments,

~2 0
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Thus ir strongly converges to e2. The decomposi.tior of A' into A, and
A 2 (l,r) is not surprising since the first plan doesn"t dlend on ihe
second while the nonstationary MC appears because we are restricting
attention to the second plan which does depend on the first.

4.2 (n) Serial CSP4. These plane can also be easily handled by dir.et
products. Before- pr-oving the next theorem, some new matrices must first
be provided, By extension c' direct products to three or more matrices,
we define the needed matrices in

Definition 11. Given (n)-serial CSP-l, the (n)-serial transition A
matrices are

P2n. qA2n 0-"A 0

Pj12n 0 q1A21j--- 0

R .I.2 0 0--- qlA 20.

8112n 00--0 2

where PkI(k+l)n qkA(k+l)n 0 --- 0

Pkl(k+l•n 0 qkA(k+l)n- 0• ~Akn=

rkl(k+l)n 0 O'"qA(k+,)n

8kl(k+l)n 0 0 --- kA(k+l)n 4
for 2 s k A n-l (and for k 1). More explicitly,

SAkn a the transition matrix of the (n-k+l)-serial CSP-1, consisting

of CSP-l'.s k through n from the original (n)-serial CSP-l.

Por k- n, An A A. Moreover,

,(k+l)n - the identity matrix of rank (ik+l.---. in), for 1 s k n-2,
and of rank in for k n-l;

that is,

I(k+l)n I ik+l 0 ' In 1 1 A k A n-2

KIn k n
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-Some important relationships exist for these matrices in

Theorem 13. Given the matrices in Definition 11, we have

iA cn ( 2!n- A2n)* Al A..k .

IN More generally,

k - CAD(k I (k+lylA(k+f)n)÷ Ak(I A(k+l) n 1 S k I n-l

Proof. By definition,

A(n.-l)n Cn-l O (Inn- Ann) + An-i1 'Ann

since An. - A, and Inn" In. Backward induction on .k, the second equation
in the statement of tHis theorem, and the decomposition of the transition
matrices according to Definition 11 give the result for fixed n. Backward
induction can be converted into forward induction by relabelling. Double
induction can also be done by varying n, keeping k fixed, and then proceedingby induction on k, keeping n fixed.

iA To determine tne long run pv of (n)-serial CSP-1, Theorem 13 will be

used, in Theorem 14, along with

Prp ton 3. If B, and B2 are transition matrices for two finite,
aperiodic, and irreducible MO's, then BAD B2 also has all three properties.
Moreover if e and e are the long run pv's for Bi and B2 , respectively,

. then a,• p-g Is the Ions run pv for the matrix direct product.

Proonf. t is trivial that the direct product pd finite. The other

•,properties follow from the equation

".'heorem 14. Given (n)-serial CSP-l together with the long run pv'a,
.1k, ior the constituent plans (I i k A n), the long run pv for the serial
plan (model) is

S2 -- 11
Proof. Using backward induction on the index k, for fixed n (and more

generally, o•uble induction on k and n) as in Theorem 1, Theorem 12 shows
that -1 is the long run pv for A(n-l)n. The first equation in

Theorem i3 , the equation
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suffice to finiOf the proof.

As an example of Theorem 14, consider (3)-serial CSP-1. The "Go"
A probabilities tor a transition in the third plan are;

qlq2 , ql$2, O1q2 , and 102.

The "Stop" probabilities for a (virtual) transition in the third plan are:

PIO qlP2, qI8 2, all O1P2, and 0162-

The matrices are:;A4

A13 C cl (123 A23)4+ A1i W A23  (14)

A23  C2 OW (13-A3) + A2 WO A3  (B4)

Rearranging Eqs. (04) and (B4), expanding the "23" identity matrix, and
substituting the rearranged Eq. (M) into the altered Eq. (A4) yield

A13 0-C1 A K 12 AW 13 ( A3.- C) IO C 2 %08 13

SLookig~n at this last equation and the "Go" and. "Stop" probabilities, the
first term of the equation is the "Stop" matrix for transitions in the
second and third plans together while the second term in the "Stop" matrix
for transitions in the third plap alone. The third term Is, of course, the

A: "Go" matrix for all three plans together.

We investigate, at this point, an alternate "proof" for Theorom 14
analogous to the one given for Theorem 11. First of all, we derive the
recursions and the decomposition which resulc from the assumption of an
initial separable pv fqr (3)-serial CSP-I. The extension of the results
to (n)-eerial CSP-l is then easily obtained.
:Let xO yO ,0 be an initial pv'for the (.3)-serial CSP-l model.

SFurthermo~re, define the following three sequences of vectors;
•" ~xcA•. 9r. 0AU-rr " O '-ur .I Arvr 0 21 and wr m zo A3

Also define a(2,3) to be the unity 1 x (12 i 3 ) vector, and a k the unity
I X !k vector, for 1 A k £ 3. Rewrite the equations for A13 and A23 as
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and

" I A23" C2  13 + (A2' C2 )0 A3  (D4)

from Iqq (C4), we have

+u 1 -Vi () ® (Y-0 ) -E A23)0
(l..'i..)

Since the components of al(D& add to one, we have from the RHS of the
last equation20)8()

(a. -,')) a(23o- ) -(+ -

Thus, as before we have x1 " ul. Since the components of x! add t~o one, we

also have

X sl l Eq. ( N4) to evaluat~e the sen~ond fa ctr~o of the s econd t:e rm of the RHS
of the second to last equation gives the following string of manipulations.

S(4_o0)h((mo)')_.. . (D ,o) A23 L or

with the (2)-serial case)

((3t_ .0) A23) or

(jI) 8~02)E + (1-go(2))wl

0a wher o(2) 13 + (1-go(2)) A3)

(Y. MY.s(g 12 + (1-60(l)) A2)
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and t)

• IL3)_t (,I' E••l) = _

S. , (so(,2) 13 +.(A-g0(l,2))A3)

Awhere l-g0(l,2) -(l-g0(,)) (l-0(2)). Proceeding+ by induction,

_,r~ i r~l N1 2 (r), and %r+1 .rA AOf (r'
F where

A2~ (r) gr B(1) 12 + (1-gr(l)) A2 gr(l) 1V14-1

A'3 (r)- r( 1 ,2 ) 13 + (.-,r( 1 . 2 ))A 3 , A - .(l,2 ) (1-,r(.))(-,,r( 2))

and gr(2) 1 -vyy~2. Furthermore,
Y- "N° '2 (j) and g - ,o A'3 Q) ;

Therefore once again (srngly) convrge t o e.g(l) cnegst
ZW~~~i f*Z0 w th"iBr1 ien eha t o-"10 2 1,10 and gt(2) converges to 2ow2 then tht

i 1 si-r(1, 2 ) converges to (1-vloa2  )(l-v2 a2c 2 )

ad 3 (r) (strongly) converges to (1-AFI(l)-AFI(2))1 3 + AFI(l),AFI(2) A3 .

Prom the last statement, the recursive relationships, summability theory,
and (6.10], c• converges to 9,.

In summary, for an initial I rla_ pv for (3)-serial CSP-l, all
three components individually converga to their long run tyos which are
independent of one another. Moreover, analogous to A12, A13 decomposes
into one ergodic stationary MC and two strongly ergodic nonstationary MC'u,
the third depending on the first two.

The vector approach can be generalized to (n)-serial CSP-1 as an alter- A

nate "proof" for Theorem 14. However, the major reason for the vector
"approach is to obtain recursions and the manner of convergence. By induction,
one can now easily show the ?ollowing recurs~ons and decomposition for
with an initial separable pv a x•_•---• •. An outline of the results
is given below.•A

-41 , .'a. I AI(r), 1 s a , n

where

A,(r) " gr(l,2,-',s-l)l, + (l-gr(l,2,---,,-,)) As
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. . . . .. .. ... .....

and s-1

lgr (1, 2,,8)-T (1-~k()ik)
k-i

(and gt(O) - 1). Thon taking limits, 've have a "proof" for Theorem 14,
In general then, Am decomposes into mn'ergodic stationary MC and (n-l)
strongly ergodic nonstationary XC's of increasing dependence on the ele-
•mits of� all the preceding MCWsi

We now deal with AFln(t) in

Theorem 15. For (n)-sertal CBP-1,

l.AFtn(o) - vn(Qbj1r 2  - b b(ni1))enin.

(again bj is shorthand, 1 9 j t n-1),

Proof. From TheQrem 14,

The" an" [(eG1)('2k)..--.(Gn.)]

The rest of the proof follows the logic of Theorem 12. For example, the
functional is

N

the th ~ C(J,in)(W11(n-l)I wn~k)

where Jim the set of (n-l)-Mples of indices varying in a manner such that
the rth index varies between I and ir, 1 4 r A n-1,

The same comments made about AF11(m) and AFI(.,p2 1i21 f2 ) also apply to
APIn(a) and AFI(N,pn|infn).

I.3 (n)-Serial rSP. An example of a CSP, different from CSP-1, is CSP-2
ien in t;r•ei-; the limited sampling phase (abbr. Is) requires sampling

at-some frequency and, in addition, has a "clearance" number (for successive,
but not consecutive, k nondefective inspected items). In a sense, the is is
a&combination of the na and uls phases,
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Figure 4

Block Diagram of CSP-2

(3) --- -- -

(2(2)

Is - limiting sampling phase

Arrows (1.) and (2)1 As in Figure 1

Arrow (3)1 If kc units are successively inspected
and found to be defect free

Arrow (4)t If the jth u~it inspected is found to be
J ~defective, 15x j s k

The Is phase can be looked upon am consisting of kc MC states. Further,
each stat'i, SLJ, has transitions to HO and SL(J+2.) (or to Si for j k I),
given in the a transform mode, am follow. (see [6.21 for further details)

SLJ to SLQj4.) or Si given by X)/.v)~~ fq

ELJ to HO given by "6d/(z-Y)", 6 -,fp

As an example, consider the (2)-serial CSP given by a CSP-2 followsoe by a
CIP-l (the reverie order is easy mince then the component matrix 2 i
just the transition matrix for CSP-2). The matrix for the total plan is

Dropping indices on the individual probabilities, those matrices used on
the RHO above which come from use of CSP-2 are

Gii Gkci

G±k Gkki
where

K K..



p q 0 0 X0v 0

.0 0- 000-X 0

j8 0 0 -- 0

L80 0J J
10 0- 00

6' 0- 00

10 0

ofane raohr ByPooits 3 h an oe matrix, iAireucbesonie

Another 0o~il 0ain sgvni iue5



..... rf1U V ~ , r, 't ti ........ .---. ..- A1 AJM~E l... .

Figure 5

Variant Multicharlcteristic Plan

j,19tjI .Same an in Vigure 3 4

,Tznlitionu ((kj.)+l may be ij for - 1,2)t

St~ats0 State ProbailLt

(kl,k2) ((kl)+l(k2)+l) qjq 2

WT1k2 (i,(o2+l Oq 2

I'(kl,12) ((k1) +1 ,12) q1B2
(i~l,i2) Cli)08

Any of above + (0,0) l-Prob(state)

The transition rules in Figure 5 can bn restated: transitions take place
if f both characteristics are each either inspected and found nondefective or
sampled, If we let il " 12  i this pla has one ergodic class given by the
diagonal ordered pairsi (,j) 0 j S i ; all other states are transient.
Moreover, if the inspecti stirts or ý the state (0,0), we then have a
plan equivalent to CSP I with P = I-qzq- and ý - 010 However, with this
plan, marginal AFP has no meaning because of the ambiguity expressed by p
and 1-3. It is even doubtful whether the traditional AFI function would
be'a good measure of effectiveness for such a plan.

5.0 CONCLUSION, The motivation for this paper is Chapter3 evn though theS'I :i ~main, workablL results are contained in Chapter 4, "

.1 .Chapter Three, The two model, considered in Chapter 3 employ SMC raduc-
tion in an attempt to simplify the second order MC model at the and of

Chapter 2 and highlight the differance between it and the (approximate)
model gwven by the nonstationary MC. Any simplification of the (2)-MC
modsl by using SMC reductiins for both plans would probably not be worth
"the effort since superimposing two iL e"da•ndnt SMC's is quite a complex
process in itself here, of course, the RM6T-are £i.e-ndnt I

If we are only interested in the long run case (ignoring the transient
came which is hard to analyze anyway)t SMC reduction of both plans can be
used to yield a model consisting of the status ((a,l), (a,2), (b,l), (b,2))
where the letters and numerals refer to the secod and first BMC reduction,
respectively, in Chapter 2. This model would replace the pdf'. of states b
and 1 by geometric pdfts, The conditions to be satisfied for this change are

1 U•b and -•-- =•
andl
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The (q')'s are to be determined given the standard mean times Pb and li,

More results on produ~to of random matrices may be found in [6,4]
wheare various type& of independence asumptions are invoked,

5. Chaps e• U. One main result is Theorem 12 (and;Theorem 14), As

aconsequence of the theorem, the expression Vae 2  has two inteNpreta-
tionsi the average fraction sampled in the usual sense and the average
fraction not inspected in the serial sensa, The other rain result, not
formally stated in any theorem, Is the decomposition of any (n)-.erial CS?
into a sequence of'MC's, the first stationary, the remaining nonitationary.

The (2)-HC model assumes that the characteristics are independent.
This condition can be relaxed if the ordered pairs remain independent but
the two elements of any particular pair are allowed to be correlated. Let

Z (Xj, Y) be the description of the jth unit. That .s, Xj(Y) -0 or 1
Zitf the first (second) characteristic is nondefective or deae~ tie, re-
spectively. The relaxation is equivalent to the assumption that the Zj
form a Bernoulli process but that Xj and Yj are not independent. Then,
using the definitions of correlation coeff~cient and conditional probability
(k,- pkqk, k - 1,2) we have

"I -11X -0. P24 (roia2 + P1P2)2 q,

and

Now P1 < P2 (or > P1 iff ro*•2 > 0 (or< 0) and then iff the characteris-
i.cs are positively (or negatively) correlated, In particular, if r • 0
(or < 0), then AP12 (.) will be seialler (or larger) than that obtained in
Chapter 4. We finally note that for random variables Xj and Yj, uncorrelated
is equivalent to independence,

In the variant case, a (2)-characteristic plan is given where the very
meaning of marginal AFI is nonuxistent. Such a plan might be useful for
cases of large positive correlation.

II
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INTERVAL ESTTMATION FOR EMPIRICAL BAYES GENERALIZATIONS
OP STEIN'S ESTIMATOR

Carl Morris
senior Statistician

i The Rand Corporation•.•i •Santas Monica, California

ATUACT. The Jaems-Stain estimator improves the expected man
square error of k k 3 independent sampls means for all possible com-
binations of true means. In spite of this, it iS not widely used in
practical applications, partly because no confidence intervals accoe-
party it. We derive interval estimates in thio paper based on an un-
informative prior distribution and illustrate the use and success of
the method In an application. Not only is the estimator about three
times as efficient as the sample mean vector in this example, but the
intervals provided are 37 percent shorter while containing the true
values with greater frequency than nominally claimed. The prior is
used in the final section to extend the James-Stain estimator and to
provide interval estimates for the case when the unknown parametersare exchangeable but the sample means have unequal variances.

1, INTRODUCTION. The James-Stain estimator (1961) of the means
of k k 3 independent normal distributions is well-known for being uni-
formly and substantially better than the sample mean, on the basis of
its expected sum of squared errors. The James-Stein estimator and its
generalisations apply to many situations involving linear models, and
offer mean squared error improvements over the classical estimators in
many of the applications of statistics* Nevertheless, an informal poll I
of perhaps 150 statisticians at this conference revealed that only one
(I would be a second) had ever used a Stein-like estimator in a real
application.

Why? Polls of other groups of statisticians probably would yield
similar tesults, although subjective Bayesians and ridge analysts may
uae related methods more frequently in actual data analysis. The rea-
sons certainly include unfamiliarity on the part of many statisticians
with the methods and the typed of applications for which the James-
Stein estimator in particular, and multiparamscer estimation in general,
is best suited. Long acceptance of the sample mean and its simplicity 'ISUmakes statisticians reluctant to reject it in favor of a wtOre comp]l-
anted and imperfectly understood method, FurtLermore, the use of the
James-Stein estimator requires making judimenrB about which problems
to combine, which not too and the choice of origin to shrink toward,
If these judgments are not good, then the Jamem-Stain estimator will
improve on the total mean squared error of the sample mean inigmnifi-
cantly, and can be much worse for some coordinates. These reasona for
the nonuse at the, James-Stein estimator in applications are discussed
move fully in Efron-Motrie (1975, Seas. 1,

*Thm work was partiall.y nuppovacnd by n irant front the U.S. Depnrt-

mont of Henlth, dtcicatiom, and ,elfnrr, Y,1 hinton, 11,C.



Even those familiar with the James-Stein estimator often do not
use it in its simplest form because the assumptions made for its der-
"ivation usually are not met. Instead, a generalization usually must
be derived to estimate an appropriate origin, to account for nonnormal

kit[ distributiosm, for unequal variances of the observations, for unknown
variances of the observations, for regression situations, for multi-
variate data, or for another variation of the assumptions, Recent pro-
gress in providing these generalisations has not yet had much impact.
Furthermore, the enorallustions derived by different researchers are
not always in agreement because they are not derived from any single
principle. It seems to ma, however, that data analysts probably will
find the empirical Bayes viewpoint most useful both for identifying
appropriate situations for using the James-Stein rule and its general-
isations, and for derivtng appropriate gseneraiations. For that rea-
son the empirical Bay*e viewpoint has been used in most of my papers
with Professor Efron (March 1972, August 1972, March 1973, November
1973, 1975, March 1977, May 1977) on this topic.

"Another deterrent to using the Jams-Stein estimator is that
despite Its ability to reduce mean squared error, no methods have been
developed for estimating the precision of the estimates, or for deter-
mining confidence intervals. (Soma attempts have been made by Stein
(1962, 1975, 1974), but the results there are largely theoretical and~asymptotic,.)

The primary purpose of this paper is to provide a method for
deriving Interval estimates for the unknown parameters estimated in a
mattr similar to that of Jamse-Stein and to illustrate the results on
data. This is done in Section 2, using formal Bayesian ideas. The
improper prior distribution used is not chosen subjectively, however,
but is chosen because it yields an estimator similar to the James-

'I Stein estimator, because the resulting estimator is minimax (uniformly
dominating the vector of sample means) and admissible, because it
should lead to conservative interval estimates, and because It results
in easily computable statistics. It has been considered previously by
several authors Baranchik (1964), Stein (1962), Leonard (1974).

The discussion in Section 2 is centered on the problem of esati-
mating the true batting averages of eighteen baseball players, These
data, which wr. used before in Eron-Morris (1975), are ideal for this
work because the true values are available. The "confidence ititervals"
derived by the methods of Section 2 are about 37 percent shorter in
this problem than those for the sample mean and they contain the
true values with the proper probabtlity, Since the true values were
not nhosen from the prior, the results encourage the idea that this
method may be %sed generally. Such a recommendation must *wait further
research.

The prior distribution also is used in Section 4 to derive a
multiparameter estimator for parameters which have an exchangeable
disLribution, but whose mample means have markedly unoqual variances.
While thu resulting estimates and interval estimates in this
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illustration compare favorably to the sample mean, Section 4 is intended
only to illustrate the use of this method. The resulting rule is known
not to be minimax, however, and its properties await fuller investigation.
Stills the method appears to be as good as any suggested to date for
generalizing the .James-Stein estimator to the case of unequal variances,
and it does permit construction of -interval estimates.

2. A ORD 3Wa~.rwL ZZIRIX L DAES INTELVAX. EUTI AT1 FB n0 Xi• ~~BAT _NO__A• N•• O ... •2-BASESALL PLAYERS. Let us consider the

problem of seotmating the true means [0±] of k normal distributions,

having observed the independont sample means X1, X2 , ... , Bc. EahX

is assumed to have the same variance V which is known. Thus, given 6i,

xOWd N( i. V) I - I, 2, ... , k. (2.1)

The simplest version of the James-Stein estimator (1961) applies
when k > 3 and requires making i priori guesses 61,, p21 P". k at

ek, Then 0i is estimated by

+* (I - 1 8)(Xi Pi) (2.2)

with';i w~h is (k-2)VlElX• -A:). :.

iIi
"The value in (2.3) determine@ how much Xi should be shrunk toward p,,

Whenever J exceeds unity, it should be replaced by 1 in (2.2)

The unual estimator of 0is Xi, being the best unbiased estimator,
the best fully invariant estimators the maximum likelihood, the least
squares and the Oauss-Harkov estimator. It is minimax with the a+-

pected oim of squared errors, the "risk," being
•E•(x,. e0lSV k. (2.4)

The subscript 0 on the expectation operator indica.es that 0, .. Il Ok

are fixed and X ... , Xk vary accc ding to (2.1). The James-Stein

estimator 1Is uLiformly better by this critericn, having r4-sk

H W(Oijs - a IV)2(V k - (k-A) (0.3)

,which is less than k, since 3 > 0 always. If = for nl i, then

, 1 resulting in a risk equal to 2.
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If the statistician prefers noL to 4Less at the [•i], but believes

1 •2 " "'" (say), he may estimate i. by X L Xi/k and modify

(2.2) to

•I - x4. (1 - s)(x+ a ( ), (2.6)

defining

Js (k-3)/S, s - z(xi - ) 2/V. (2.7)

This version of the James-Stein estimator applies only if k > 4 (one
degree of freedom is lost in estimating p by X), but it ordiarily would
be preferred to (2.2) in applications to data. Its risk is

•. •E ,EA(i 2 %)/V - k - (k-3)EAs (2.8)

• •'i ~ ~dominating the risk (2.4) of the sample means. If 61 .. = ,itS

easily checked from the chi-square distribution that ,B -S 1 and hence
that (2.8) is equal to 3. Otherwise (2.8) increases from 3 to k as

EZ(ei .)2 increases. Once again, it is better to modify (2.6) so that

every is estimated by X in the event that BJS > 1.

The estimator (2.6) was applied in Efron-Morris (1975) to the base-
ball data of Table 1. The observations X in the second column are the
batting averages of 18 batters in 1970 after 45 attempts. The variance
of each X is known to be V m (0.0659)2. The batting averages for these

players during the remainder of the season, considered to be the true[ values" ei, will be presented later.

Instead of the James-Stein estimator (2.6), the one recomended in
this paper for k _> 4 uses

R " + (l - B)(X- 2, (2.9)

as in (2.6) but replaces (2.7) by the smaller value

Actually the values Xi in Table 1 are minor adjustments to theobserved averages after 45 appearances given by X•i w 0.4841 + 0.0659j4-*

arcain (2pl- 1), rounded to three significant figures. The observed
average actually is Pj; for example, f - 18/45 - 0.400 for player 1
(Roberto Clemente). The arct " ansfirmation stabilizes variances, as
required for assumption (2.1), and the constants 0.4841 and 0.0659 are
chosen so that the Xi) anI the [Pil have the same mean (0.26567) and
standard deviation (0.0659). The same transformation ei - 0.4841 +
0.0659/45 arcsn (2p -1) was made to the true values pi, being the pro-

* portion of successes during the remainder of the season for batter I.
The names of the players and other information about this problew are
contained in Efron-Morris (1975).

~?L . '.°~5lV21 lfl SO~L . .
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S~Tal-le I '

THE MAXI14UM LIKELIHOOD ESTEMATES (NLE), EMPIRICAL BAYES ESTIMATES (EBE),
AND TWO ESTIMATES O? THE EBE RISK FOR EACH OF EIGHThEN BASEBALL PLAYERS

(1) (2) (3) (4) (5) (6) (7)

1 0.395 0.308 0.046 0.203 0.491 1.738
2 .75 030 .044 0.145 0.454 1.163

'• 3 0.355 0.295 0.043 0.097 0.424 0.685
•i:1 4 0. 334 0. 288 0.042 0.057 0.398 0.287
: 5 0.313 0.281 0.041 0.027 0.379 -0.006
.. p., 6 0.313 0.281 0.041 0.027 0.379 -0.006
•. ,! 7 0.291 0.274 0.040 0.008 0.367 -0.198
8 0.269 0.267 0.040 0.000 0.362 -0.274
! ::,,• 9 0.247 0.260 0.040 0.004 0.365 -0.234

A • 10 0.247 0.260 0.040 0.004 0.365 -0.234
i 11 0.224 0.252 0.040 0.021 0.376 -0.067
12 0.224 0.252 0.040 0.021 0.376 -0.067
S13 0. 224 0. 252 0.040 0.021 0.376 -0.067
,;! 14 0. 224 0.,252 0.040 0.021 0.376 -0.067
•; i 15 0.224 0.252 0.040 0.021 0.376 -0.067
16 0.200 0.244 0.041 0.052 0.395 0.243
17 0.175 0.236 0.043 0.100 0.425 0.714
18 0.148 0.227 0.045 0.168 0.469 1.391

0.266 0.266 0.042 0.056 0.397 0.274
____ 0.068 0.022 0.002 0.060 0.038 0.593

COMPUTATIONS: k - 18, m- 7.5, V- (0.0659)2

X - 0.26567, 8 - EC(X - X)2/V - 18.93244,

1 - OGA) - 6,76 x I0-6 0 5 (S) - 3720.30214, e 7 5 (S) 6.77428, i

! 5-(1 - 1/67.S()) - 0.79229 x 0.85238 - 0.67534.

i; + " 0.17941 + 0.32466 (X-X)2/SV - (Xt-X)2/0.08222,

1 [21 - 15(1-)/e7.5 (S)]/S - 0.63178/S - 0.03337 - (0.1827)2,

k. 1 17 + (-b + PivS w 0.36218 + 0.631.78 Pi,

ci(X) W (V * Re)i = 0.03966(1 1.7444 Pi) A
A17 -%2

.1- 2 b + P, S[2v +,B 3 - -0.27563 + 9.89823 P,

R/k * 0.39728, Z ilk
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-2S) m a mm 2-

where for S m Z(Xi - X) /V we have defined

a (S) a-m exp(S/2) jB- exp(-BS/2)dB. (2.11)

The theory behind this estimator vwll be presented in Section 3.
Here it will be described and Its application illustrated. The function
sm (S) increases with S from e (O) - I at 8- 0 to infinitya S- .
Thus o (S) > 1 always and theefore I in (2.10) shrinks X. toward K less

than the James-Stein estimator does. One can cowpute ea(S) by direct

Integration, or by using tables of the chi-square distribution, of the
incomplete Zama function, or of the confluent hypergsometric function
We(a, b, z), Abramowitz-Steguz, (1965, Chapter 13), since

0 m(s) -r(,+)(•) exp(S/2) o,-.

SSO

S- ,1 - 84, 2) r(2nS) E (S/2)J/r(m+l+2). (2.16)
o m 1 m1,lfo1-0

itHowever, it usually Is simplest: to compute it reuursively from

!:; 1 ea (S) (om ..l( ) - 1) (2.14)

S~using the initial values

ia e(8) -(eap(S/2) - 1)(2/s),

(2.17)

#(x) being the oumulative destri buton functren of a standard normal
mdistributon, For large values of 0, the approxh adtion

•,.1- •3• •(2rS)' axp(-si2)(S+l)/(s+2) (2.16)

amay be used in (2.15), Abramowit--Stegun (1965, p. 32). For small valuesof S, ea (S) A 1 + S/2(&+1) + $;/4(z+1)(m+2), from (2.13), to

M• (m+1) M+2) (2.1•7)

ig•noring terms of order 82 Hance I decreases monotonically from
•i a/(m4.l) -(k-W)(k-1) at S -0 to 0 as 9- . The reader is cautioned
• about the use of (2.14) for small values of S. it can be numerically

unstable in such cases, and then (2.13) should be used instead.
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Using the values of [X,) in Table 1, we calculate

X 0.26567, S - E(x. - -2 2 . 18.93244, m - (k-3)/2 - 7.5,

S2- 1(q) - 6.76 x 10- 6 from (2.16), *.5(B) - 3720.30214 from (2.15),

(9) - ~7.5(8) - 6.77428 by Iteration of (2.14) seven times,

.B is 15/8 - 0.79229, 0.79229 * 0.85238 - 0.67534,

. 0.26567 + (I - 0.67534)(X 1 - U.26567) - 0.17941 + 0.32466 Xi.

In this case, (2.9) shrinks the MLEtoward the grand mean only 85.238 A
ercent as much ae the James-Stein estimator (2.6) does. The values
are recorded as the empirical Bayse estimates in the third column

of Table 1. oab
What pvecision should be attached -to the estima.tes just derived?

Is error of estimate we will use is given in column 4 of Table 1 as !

oi(X), computed an follows. Define

v a [2^ - (1-B)(k-3)/em(S)]/S (2.18)

and i
and-1 + k-- (1-6) + PjvS (2.19)

where

a a (X. - ) 2 /:C(Xj - 1)2  (X• - 2)f/vs. (2.20)

Then a*(X) is defined to be

-9i (VR~j)i- (2.21)

From the values already obtained, we compute

v a 0.63178/S 0.03337, RI - 0.36218 + 0.63178 Pi,

c;(X) - 0.0659 (0.36218 + 0.63178 Pi)i - 0.03966(1 + 1.7444 P 0.

The values [Plo. which are recorded in column 5 of Table 1, measure in
relative terms the squared distances from the individual means to the
grand man. The precision (2.21) is better for those components i having
Xt near the center X of the data. This fact is completely analogous to
a similar result in linear regression, that prediction errors are smaller
near the mean of the explanatory variables. Values of ot(X) appear in
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K *X
column 4 of Table 1. A player at the mean would have oi(X) - 0.03966,

but player number 1 is farthest from the center with P1 M 0.203, and
therefore has *(X) - 0.046, 16 percent larger. The typical value of

ai(X) is about 0.0415, or 37 percent less than the standard deviation

0.0659 Of Xi. Thus, a considerable improveumnt in precision is claimed,

equivalent to using th., iample means of a sample 2.52 times as large.

Formula (2.19) is one of two estimates of the risk 0 " )2/V,

of the empirical Bayes estimator (2.9). These values are given as

in column 6 of Table 1, and are less than the risk of the sample average
E (Xi - ep)2 /V - 1 for every player.

In column 7, the unbiased estimates of the risks of are given,

computed from the formula

"1 - 2 -"+ P:,[2v + 2s. (2.22)
i k u~iL~

The estimator in (2.22) is the unique unbiased estimator of the squared
error risk of the estimator (2.9). That is

I:~e/i - VB(%) - eg
2 /v, (2.23)

for all fixed (e0, ... , ek). Surning the values of (2.23) over all k
players, with (2.18) substituted in (2.22), we obtain

R+ - E k - (k-3)([ + (2-;)/e (8)]. (2.24)

Since R+ < k for all (X1 , ... , Xk), and i + is unbiased for the risk of

(2.9), it follows that (2.9) is a minimax estimator of (al, ... ,

for kŽ 4. That is

e60- k)2 /v -k- (k-3)EIB + (2-')/em(S)1 < k (2.25)

for every set of values (61, ... , 1). The minimax character of (2.9)

was proved by haranchik (1964).

Clearly the values Ri in Table 1 are unreasonable, being negative

mstimates of a positive quantity in the central 11 of the 18 cases. With
other data these estimates might look bet or, but they generally tend to
be quite variable. The smoother values Ri provide more reasonable esti-

mates of component risk, although as a group they aend to be conservative,
for the following reasons. The sum of the values Ri can be written
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R+ Ri- k - (k-3)[B + (14)M(S), (2.26)

,:€ 'i•or using (2.24),D

1+ + 2m/e,(S). (2.27)

It follows from (2.27) that Ri overestimate the total risk of

(6 ) sice is unbiasd for this risk. For the data of

Table 1, we calculate + 4.937 from (2.24),R .+ 7.151 from (2.26),

and 2m/ea(8) - 2.214. The amount We (8) that R+ overestimates the
total risk decreases as S increases, and would tend to be smaller for

Smost examples, where the true values are likely to be more dispersed.

How well does this analysis do? The true values are liven inTable 2, column 2. Column 3 presents the values (• ,";t/a*(X), a

distribution which ideally ham zero rman and unit standard deviation.
The mean of these values is -0.027, only about one-tenth of a standard
deviation from that expected, the standard deviation is 0.862, meaning
that the tntervals are conservative. This is expected, since from (2.27),

E (E M 'VeR.E e Z 6 - C 2.28)

and so the oi(X) tend to be too large (by about 15 percent in taes case).
For comparison, thq distribution of errors of X., relative to the stan-

IA dard deviation of X1 , is given in column 4 of Table 2. The mean and

standard deviation of these numbers are almost exactly what is expected
from a samplq of 18 numbers from a N(0,l) distribution. Hence, the in-
tervals for It in this example are both shorter and more conservative
than those for X, .

The signs of the HLE errors in coluwm 4 are strongly correlated
with the Xi values, because the true means 6 have regressed markedly

toward the man, relative to the observed means Xi. Figure 1 shove

this regression effect vividly, and how the (ti) shrink the [Xi) to

produce better estimates. The dispersion of the (*ti is even smaller

than that of the true values (0,) mines the ordering of the [0i) in not

highly correlated with that of the (X,) (Spearman's rank correlation

*These really are only the batting averages for the remainder of4

j the 1970 season, being independent estimates of the true values with
standard deviation 0.0659 (45/Ni) N ,i given in column 7 of Table 2.
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coefficient Is only p(e, X) a0.218 for these data).. The regression
to the mean effect also occurs for the EB estimates-. in column 3,
although it is~much laes pronounced. An even leos conservative shrinki 'ng
constant than B would be needed to ftlizinate the regression to the mean
for these estimates and true values.

Table 2

TRUE VALUES, RELATIVE ERRORS, AND LOSSES FORI: EMPTRICAL BAYES ESTIMATES (EBE) AN4D
MAXIMUM LIKELIHOOD ESTIMATES (MLE)

(1) (2) (3) (4) ()()(7)
TRUE EUE MU.E EBE ML!

VALUE RELATIVE RELATIVE LOSS LOSS
ERROR ERROR

x~e 0 ~~'2 (XS 2
-X -64)

1 0.346 -0.831 0.744 0.339 0.553 367

7 0.360 0.026 0.1379 0.000 0.145 586
4 0.223 1.560 1.6840 0.796 2.7375 238

5 0.276 0.1284 0.361 0.030 0.3133 5108
10 0.2732 0.194 0.228 0.015 0.368 200
11 0.266 -0.393 -0.379 0.014 0.140 277

12 0.258 -0.145 -0.516 0.008 0.266 270
13 0.306 -1.334 -1.244 0.668 1.548 435
14 0.267 -0.368 -0.653 0.051 0.426 538
15 0.228 0.598 -0.061 0.134 0.004 186
16 0.288 -1.054 -1.335 0.439 1.783 558
17 0.318 -1.903 -2.170 1.540 4.709 408
is1 0.200 0.609 -0.789 0.174 0.623 70

MEAN 0.267 -0.027 -0.022 0.299 0.976 369
STDIV 0.037 0,862 0.988 0.412 1.2.57 150

Thigr 2 e obcentralnsdfshedprcline isrgrthe marimu liexpihood eiftimatol
inFgre2hheoberntiras ofathed prneein paragrapimum liexprhssd dsiffeorel

k. (the 45 degree line); the other four dashed lines are the ML! plus or
minus 1.00 and 1.96 standard deviations of X .Teedetermine the classi-
cal 68 percent and 95 percent confidence inthrvais. Each player is plotted
at his point (X e The dashed confidence bands do very welli 12/18 of
of the true val&es 1r; located between the 16th and 84th percentiles; and
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Fig. 1-True values, maximum likelihood estimates, and empirical Bayes
estimates for suah of 18 players iliush'ating regression to the mean of

the truie values and shrinkage of the empirical Bayes estimator
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Fig. 2-.LE Xý , MLE +Vv, and MLE 1.96 V'/' (dashed lines)
and EBEu"j, EBE± (×), and EBE ±1.96 ocr(X) (solid curves),

Eighteen players plotted at (XI, 1) using data of Tables 1, 2
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17/18 are within the 95th confIdence band. The middle solid line im
the empirical Bayes estimator 01 0.17941 + 0.32466 X1. This value
+o•(X) is intended to correspond approximately to 68 percent con-
fidance, and ± 1.96 a (X) to 95 percent confidence. Notice that theme
solid line confidenceands curve to allow for greater errors at extieme
values of• X. The confidence bands are conservative in this application,

in congruence with the theoretical statements made after (2.27); 13/18 ,
0.722 of the true values are in the central 68 percent confidence region,
and all 18 are in the 95 percent region.

An extremely interesting point raised by Figure 2 in that when the
95 percent confidence region is used to make a statistical test that the

.1rl true value of a player is a specified value, then conflioting results can
be obtained from the classical and empirical Bayes methods. Because it
has shorter Intervals, we expect the empirical Bayes methodology to reject
certain true values when the MULE does not. For example, from Figure 2,
a 0.500 season average cannot be rejected for player number 1 according
to classical theory, but is out of the question from the empirical Baye.
standpoint. (No one has ever approached such a value for a full season.)
The astonishing fact is that the empirical Bayes method includes two small
regions that ate excluded by the classical methodology. To illustrate
this, a true value of 0.318 is rejected at the 95 percent level for player
number 17 (Thurmond Munson) by the classical test, but is not rejected at
the eawo level using empirical Bayes intervals in Table 2. It turns out
that 0.318 waa Munson's true value. (And in 1976 he was voted the most
valuable player in the American Leaguel) We will not disease this hy-
pothesis testing problem further here, but obviously it is a worthy topic
for further research.

A Columns (5) and (6) show the losses incurred by the two estimators
0, and Xi. Only for the 10th and 15th players does fail to improve

Son Xt, and in those cases thse, loss is small, The empirical Bayes lose

•(it" 0±)2/V for the I8 players is 5.38. The sample means Sive 17.57,

close to what is expected for 18 comlonents, but worse by a multiple of
3.27 than 5.38, The values R* and RP from Table 1 estimate the expectedI A

value of entries in colui'm (5) of Table 2. Sic R+ - . 4  an R 7.15,
i is closer to the combined loss E(6±- e0) 2 /V n 5,38. However the R

values, being smoother estimates of E(0±- a)2/V, are much closer to the
individual losses (Ii- G)2 /V of the players than are the f. 'I

Do these results hold up for other samples [X,) from these true

values (081? A simulation was conducted to check chis and to determine

whether t~he intervals computed by 0, ± a,(X) and 40, + 1.96 oi(X) contain
the true vaLues at least 68 percent and 95 percent of the time. Using
the same true values [0,] of Table 2 easch time, now values of (X1 , ... , X1 8 )

were randomly drawn from the normal distribution (2.1) one hundred times,
with Var(X ) - (0.0659)2 in all cases.

...........



In the 1800 experiences, the true values were contained in their
nominal 68 percent intervals (in i + q*(x)) 74 percent of the time, and

in the nominal 95 percent intervals 97.3 percent of the time. In one of
the 100 cases three of the true values fell outside their nominal 95 per-
cent intervals, in nine aases two true values fell outside, in 28 oases.one fell outside, and in the reminin8 62 cases all 18 of the true •alues
wore in the interval 1.96 ai(X). The average shrinkinS value I was

0.608, and o,(X) was typically 65 percent of Vi, so empirical Bayes con-
fidence intervals were both 35 percent shorter and more conservative than I
those based on the sample man.

The estimate (Xi had average lose 18.45 (0.75 of a standard deviation

above that expected), while, (01 has 6.41, more efficient than the MLE by
a factor of 2.88. In no case did (b have combined lose exceeding 13.1, and
its total loss never exceeded 60 perlent of that of (Xi] in any of the 100 asoes

1W Next consider the estimates of risk, The risk of (01) is close to[4'• 6.4, the average loss in the 100 simulations. The average value of f+
was 6.3, R+ averaged 8.3. However R+ was a better estimate of the total

lose, which varied from case to case, than i+ in 59 of the 100 cases, and

had root mean sauared error 2.9 for estimating the total loss
L÷ * .(I . G)/V (i.e., E(R* - L+) 2 /l00 0 (2,9)2 for the 100 cases),

whereas R+ had an inferior root maen squared error of 3.7. The component

estimates Of risk R, were much becter than Aj, ae estimates of the lossL a (9i 1)2V n the root mean square sense, "R L, verals

L•0. 51 while . Lii typically was 0.78. The latter errors
also were more variable from problem to problem. In only 9 of the 100
cases was the root mean square of the 18 I Li values smaller the
the root-man-square of the IR.- Lil values.

The analysis presented In Tables 1 and 2 then is typical (although
slightly on the favorablo side) of what would be expected from a random
draw of observed values jXj] from the true values (61) of Table 2. The

conclusion from the simulation for these (91) is that in addition to

substantial improyement: in the risk of the sample means, the empirical
Bayes estimates Cy1, of (2.9) provide much shorter confidence intervals
than the classical estimator, with nominal values that are conservative,

We cannot make similar claims at this time for the confidence in-
tervals generated by the empirical Bayss estimator for other combinations
of true values, but there is reason to expect similar results if the
statistici• n is careful to combine estimates from problems for which the
true values are exchangeable (i.e., the distribution of the (0i) should
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be invariant under permutations). ?or large E(e6,•) the rule (2.9) is
nearly equal to the James-Stein estimator, which Stein (1962) has shown
leads to approximately correct confidence sets when either S or k is large.
Over all components, (2.9) is minimax, and conservative both because it
shrinks lose than the James-Stein rule, and because

2
'< 1. (2.29)1er. ci 2 (X)

which follows from (2.27). But ths; statistician who cares about each
individual component really needs to know not that (2.29) holds, but
that for every i m1, .,,, k,

*1, (2.30)
4a (X*2)

-Ir nearly so. This can fail badly if the true values fall into distinct
groups (so they could not have come from the exchangeable prior on which
(2.9) ia based). The most dramatic example of ,this failure occurs for

2lare k when 0r and e1 - 62 ± AV. Then, although

a( (X) i - 1, Se( l-01) A Vk/4. However the unbiased estimate

of risk of 0 1, 1, will be close to the covrect value k/4 and therefore

is a much better estimate of risk than R1 in this instance. More gonerally,

an upper bound for R is 1.5 for all k, X, achieved for P1 - 1 near S - 2k.
Thus ;(X),.S 1.225,, always, resulting in nonconservative Intervals for

components that are badly estimated. A limited translation modification
of the estimator (2.9) would reduce this error significantly without
substantially reducing the ovevall efficiency of the estimate (3fronlMorrie,
1972). Obviously, considerable caution must be taken when applying 0 to

components with large Pi or large R1 values. This example warui against

too much reliance on the Bayesian inteipretation of the estimator and
illustrates why the statistician must consider the exchsngeability
assumption to be plausible before using either the James-Staein estimator
or (2.-9).

a. PEIRYATIgN OF THE EPIRICAL B¥ER ESTIMATOR. The James-Staiti
rule (2,6) may be derived as an empirical Bayes estimator (see Ifron-
Morris, March 1973, and Ifron-aorrim, 1975) by assuming that the true
values to,) independently follow the same prior distribution with two

unknown parameters p On SLO A w Var(ei),

Gi Nd(p, A) i 1, 2, .. ,, k (3.1)
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Given (0,), the sample means have the normal distribution specified in

(2.1). If and A are known, the Bayou estimator of e for squared error

loss ia the posterior mean..(i2

E(o.IX, A, ) + (1-B)C Xi-1()( , (3.2)

defining

B V (3.3)

The marginal distributicon of (Xi) given .i, A is obtained by integrating

.G:3 out of the conditional distribution (2.1) of (Xi], obtaining

Xi OW Nid(ji, V+ A) I-Is 2, #.., k, (3.4,)

Thus X is the usual estimator of p, from (3.4), and can be used to replace
the unknown ji in (3.2), while S a E(X1 -R)'/V, being distributed an

s ~ 1 -2 (3.5N

Sbecause f (3.4), provides a basis fur estimating B. The unbiased estimate
of B is u (k-3)/S,

HB a K sk A a B (3.6)

from (3.5). Substitution of R and J for the unknown values V and B in

(3.2) yields the James-Stein estimator (2.6) of (6i. as an empirical Bayes

estimator.

Instead of the unbiased estimate, we will derive a formal. Bayes
estimator of B by assuming A is uniformly distributed on (0, a), that is,
with probability element dA on [0, a). A compelling reason for this choice
is that the James-Stein estimator is the formal Bayes estimator resulting
from distributing A uniformly on [-V, cc). Since it is known that A cannot
be negative, being a variance, restricting it to [0, w.) leads to an
estimator similar to but better than the Jaiias-Stein edtimator. This prior
has been studied before with p known, by Stain (1962), by Baranchik (1964)
who proved the resulting estimator is miniTax, and again by Stein (1973)
where he developed the unbiased estim tor R of its risk and also observed
that the rule is admissible because of a theorem of Brown (1971). Leonard
(1974) discussed the prior in a Bayeslar. setting, and it is similar to, but
not identical with, prior@ reommended by other Bayesians for this problems
Jeffrey. (1948), Lindley-Smith (1972), Zellner-Vandaele (1975), and Good
and Wallace (as interpreted by Stein (1962, p. 281). An appealing property
of this prior is that it does not depend on the variance V. The estimators
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of Strawderman (1971) do not sharo this property, which renders them
inapplicable in the context of Section 4.

Using the density fvtom (3.5) and dA * -1dB/B 2, the density of B

given 8 is proportional to

f(BIS) w B exp(-BS/2)dB (3.7)

with m - (k-3)/2 on 0 < 3 < 1. Thert••ore the fomal. Bays# estimate of
"" is

£, 3m exp(-BS/2)dB
Em EBjS " - (3.8)I 3U1 esxp(-BS/2)dB

0

The denominator of (3.8) i1, up to a scaler multiple, the marginal
density function of S (being an improper donsity), Inr.egratinji the
numerator of (3.8) by parts once yields

- p 2 (S) + exp(-BS/2)dB

and hence (3.8) simplifies to

iwtn esa(S) defined in (2.10). Estimating p by R and B by (3.9) in (3.2)

yields the estimator (2.9) as an empirical Bayes estimator.

The variance v of B given S also can be obtained. We have

vaVar (B 5) 2 0- *B IS 2 d . (3.1.0)

Since

it follows from (3.10), (3.9), and then (3.11) that

v - 2[, - (l-B)m/e(s)]/s, (3.12)

The unbiased estimate of component risk of any estimator of 80 of

the form * " + (1-B(S)) (XC-) is, denoting BI'(B) dB(S)/dS and

Pi x- /sv,
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1iS -1-2I k- 277ý-ý,7

St(S) -1-,2 k1. B(S) + P.S[B (S) - 4B' (S)] (3.13)

for any shr4tnking function B(S) whirh depends only on S. That is

S2(3.1s)

This follows from writing
•:,. ngl~i-Oi)2/ -E[(Xi-ei) -B(S) (Xt-)]/Vi•

it d -e2/V - -- (2 iV

(S) 2 X( ) ( 2 /V-- B(S) , •-X)]

and then applying Stein's formula, Stein (1973), Efron.-Morri5 (1976), to

obtain the identity "B .

E IC Ge B s(S) (XI-j) = _ý_ B(s) (x")" (3.) 1
6 V e1

Formula (3.13) is obtained by computing

B• • (S) (X,- B (S) (X (x-) AL + B (S) ()-I /k) ,
61 •:i xi ?) i

noting that 1S/aXI " 2(X1-4)/V, uad rollectinj uerms. The expression

(2.22) for I follows from substitutir•g (3.10) and (3.9) into (3.13).

It is interesting to note if B(S) in (Z.13io any Bayes estimator

of B, computed as B (S) TBIS with TY the prior dansify of A, then

Vart (BIS) - -2dB (S)IdS and the unbiased estimate (3.13) of risk bec-mu ]
1- 1 -2  ( 4 a () + 2 Var (RIS)i. (3.16)

To compute the posterior distribution of (ya] given the data (Xij,

we need a prior distribution for p in (3.4). This distribution is chosen

to be Lebasgua (uniform) measure on (-a, w), independent of tl% distribution

on A, because it leads to the classical estimate X for i. Assuming the

normal distributions (2.1) and (3.1) for LXi] given' eiJ and (ea, given

p and A, Bayes theorem gives

+IX, A -N(, V (3.17)

To extend the result (3.2), denote e r ... , (l)', X R (Xl, P.),
a - (i, 1, ... , 1)', and I the kxk identity matrix. The distribution of a is

2-(6
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eI(x, p., A)~ Nk(4e + (1-B)(X-jie), V(1-B)I). (3.18)

Integrating the distribution of j (3.17) out of (3.18) yields

I•(X, A) Nk(h + (-B) (X-16), V(l-B) I + B so'). (3.19)

Finally, the distribution of A - V(l-3)/B given X is given by (3.7). So
integrating B out of (3.19), using (3.7), yields

R (9IX) - 6 + (1-) (X-36), (3.20)

with B given by (3.9), and the conditional covariance matrix as

covi(t x) -(14) + ile'/ + v(X-Re) (x-3)'/V (3.21)•, V

-i:•with v •Var(BIS) given by (3.12).

i• , It is not precisely true that

OI , Ni ~ E I•.eX, Cov(elX)) (3.22)

•*ihas the normal distribution. But 0 does have a normal, di, tributicn for

overy fixed B (3.19), and if either B is estimated by I without large
variance, or if the normal distribution of X is considered as an added
source of variation in (3.20), then the normal distribution should hold
approximately in (3.22). We assumed this to produce interval estimates
in Section 2. Formula (3.21) actually shows that the [0i) values are

correlated, a fact not mentioned or used in Section 2. Thus (3.21) could
be used to find posterior credibility ellipsoids for 8 given X. Instead,
Section 2 uses only the diagonal elements of (3.21)

*2 *k -1
a• WX)/V M Ri --k B - ivS, (3.23)

and ignores the covariance.

In some problems the prior mean p (3.1) may be known, and then
(3.17) would be inappropriate. All the results given so far cover the
case of known p provided: R is replaced by p throughout; k-1 and k-3 are
changed to k and k-2 in (3.5), (3.6)1 m is changed to (k-2)/2 throughout
(this is the reason for using the subscript m on ea in (2.10)); (k-l)/k

is replaced by 1 in the middln terms of (3.13), (3.16), and (3.23); (3.19)
is ignored in favor of (3.18); and the ee'/k term in the middle of (3.21)
is eliminated.

As stated before, the Jgies-Stein rule is a formal Bayes esti-
mator against the prior taking A uniform on [-V, w). Thterfore
the risk estimates, interval estimates, posterior distributions, and all
other quantities computed in this seLtion can be computed for the James-
Stein estimator. These results are obtainei by repl.acing e (8) by

m
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SK infinity (l/e (S) " 0) in all formulas. Recall, for example, that
m

B s n (eal-y/em(s)), so setting em(S) - w modifies to Bis' More

generally, if the rior takes A uniform on [a, a), o > -V, then the
•,-•resulting value of to•.

The Jams-Stein rule is obtained by letting -. a in (3.24), hence

ea(pS) .4 c. The estimator of this paper is given by a - O(P = 1),

while other more conservative estimators result from choices of a > 0

4 FORMAL BAYES ESTIMATORS IN THE UNEQUAL VARIANCES CASE. Because
of the success in previous sections of the formpl Bayus estimator result-
ing from the prior

eilA 0%d N(i, A) i- 1, 2, ... , k (4.1)

with the variance A distributed as

A~. Uniform (0, -), (4.2)

I we use this prior again in the came where the variances of the sample

man@ XI are not necessarily equal. That is, (2.1) is ueneralized to

X iN .nd N(eI, Vi) i - 1, 2, *.., k (4.3)

with the V known, but possibly unequal. This is the case that arises

most frequintly in applications. The equal variance situation zaraly

occurs, except in some designed experiments. We shall assume that the
£ 4) are known, because while they can be estimated, doing so causes
thl formulas of this section to become iAuch more conplicated without pro-
viding much additional insight. In most applications, however, estimating

* the (p I would be worthwhile. Having ansumod (pI) known, we take them to

k be zert without essential loss of generality, an& replace (4.1) with

6lA 1.d N(0, A), i w 1, 2, .. , ko. (4.4)

lBy making use of Bayes' formula, and by obtaining the marginal distri-
bution of (Xi), (4.3) and (4.4) are equivalent to

Gei(Xi, A) •nd N((l-B')Xi" Vi(l'fi)), i - 1, 2, ... , k (4.5)

XIIA N(O, A + Vi), i o, 2•, ... , k (4.6)

where we have defined

Vi

I Vi+ A (
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Letting Si b/Vi, it follows from (4.6) that .)

SiA d 1 2
sl I so2 1, 2&, k (4.8)

The posterior distribution of A may be obtained from application of Bayes'
formula to (4,2) and (4.6), or more simply to (4.2) and (4.8), to obtain
the posterior probability element of A given X1  ... ,

oaxp(- k i [js•i- los(B.)])dA

exp- . CH 8 -.. ,B M

'•:;;• ,with each Bj a function of A given by (4.7). !

F•ormulas (4.5) and (4.9) msuarize all information relevant to a
Bayeslan analysis. In particular (1

• ei a jx. - *-) (4.10o)

and :

R 0 1- Var(O IX) = + Siv±, (4.11)

where we have defined, with B D i(A) given by (4.7),

an IN 0BJ B (A)f (A)dJk (4.12)• ~and •

V a Var(0JIS) B J 2 a ) f (A)dA - (4.13)

Although there aro many methoda and some tricki to help in eomputing
the integrals (4.12), (4.13), none yield simple axiswers like thouo of the
preceding seations. The simplest way to compute (4.12) and (4.13) we have
found so far is to evaluate the numerator of (4.9) at a nusber of points
(about 100. not equally spaced), then to divide these values by their Bunt
to obtain fr (A) at those points, and finally compute thd 2k integrals (4-.12),
(4.13) as finite sum This is r minor task using a iomputer. More thought
should be given to theae c*mputational issues if the method is used fre-
quently.

J The symbols (4.10) and (4.13.) are the ,ante as those used In Sections 2,
3, and retain their meanings (except that here ji is not sstimated), So do
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Iand v, although they now vary with the component. The standard davis-
tion of .8 given X a (X1, ... , Xk) is, once again,

V. "I. a (x) - ( , (4.14)

and this quantity again vill be used to define interval estimates.

The unbiased estimates of risk are

1 -21x + Si(1' + 2v1), (4.13),

being derived by the same argument used to obtain (3.13) end (3.16). Then
f1satisfies

E- 2/(V± eL) (4.16)

for every (80, ,., I SO

For illustration, these estimates are computed on the eight obser-
vations given in Table 3. The variances Vi have unit geometric man, and
nearly increase by a factor of two (actually 1.9921))each time, leading to

max(V )/E V * .The data X I and true values 8 are fictitious, but are
carefully Acosen functions of the square roots oi the 16 expected squared
N(0, 1) order statistics so thatt (1) the JS.' look like a sample from

NO(0, 1)(hence A - 1); (11) the values (X±-e±)/V• look like a N(0, 1) sample

1with (x i-ei)2/,,i and E(N-e) nearly equal to their expected values;

(III) E(Oi-Xi/(l+Vi))2 and Z.(e±-xi/(l+Vi))2 are nearly equal to their

conditional expected values liven Xj (Xi/(I+Vi) in the Bay*s estimator of

6 if Awl ia (4.5)); and (iv) the three squared correlations between the

pairs (0., log(Vj)), (olo(Vj), (Xi-e±)/Vý , and (e±' (Xi-80±)14) have been
controlled to be near their expected values, 1/(k-1) - 0.143. The sample
ai oalled "surprise-free" for obvious reasons. Such a sample is desired

becauso the purpose of this section is to illustrate the methods on only
one data set, while we hope the results will typify more general experience.

The data and true values appear in columm (1), (2), (3), (11) of

Table 3. The amount of shlinking 3 , colum (4), increases sharply as
,V increases. The values Ai, defined in comparison to (4.7) by

aloicr e nal th • , (4.17)

also acrosse, nearly linearly In the standard deviation (V )i.
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The "true value" of A is 1.000, and se2/k 1.752. so all these values

of A I are conservative# although for small V i they are slightly less con-

servative because thoe ca ponants get higher relative weight when asti-
Smating A. The estimst i and their Bayaesan standard errors, which

V increase with Vi, appear in columns (6) and (8). Theb differ little

from X for mall V,, but are shrunk considerably for large Vi. As usual

in the unequal variances situation, the empirical Bayes estimates order
the true means differently than the sample means do (the 4th and 8th coa-
ponents are reordered). This has important implications for the theory
of ranking and selection.

The Bayesian estimate R of the ratio of the man squared error of
relative to that of X, is given in column (9). These values average

0.773, a quantity one cares about if the loss function is /vi.

The square root, 0.879, is the averaeS ratto of confidence Interval widths.
although little improvement over the sample mean is possible for components
with small V and much for large Vi. The unbiased estimtes of risk, I
appear in column (10), averaging 0.790, slightly higher than the R. avera.+ ~~All the quantities in column@ (1-(i) can and should be computed halbr
utilizing theme estimtets8..

The 'true values" appear in column (11). The relative errors of the
estimate 0,, given in column (12), have root mean square of 0.788, much
less than •ho nominal value 1.000. Thus, confidence intervals based on
di(X) would be conservative in this example. The weighted squared errors,

whos expectations are e timatod by R and A in columns (9), (10), appear
in column (13). The sum of the valuel in coium (13), corresponding tothe loss function E(%Gi- )2/V is 4.26, while if X is used, 8.00 (the

expected loss) is obtained. For squared error loss, E(Oi-e )2' 4.87

while E(Xi-91)2 - 22.56 (the empectation of this last quantity i s 22.32).

The values of the shrcnking coefficients B (Table 3, column (4))

are plotted in Figure 3 against log(V1 ), which is linear in i. The

amount of shinking increases sharply as Vl increases, but not as much

as the shrinking coefficient B v /(l+v1) for the Bayes estimator

(l-Bi)Xi which would be used in (4.5) if A were known to be equal to 1.
II

The value A of A that maximizes fe(A) in (4.9) is • * 2.345, being
the maximum likelihood estimate of A based on the joint distribution
(4.8) of (81. S2, ,,., sk), Use of this in the Bayes estimator (4.5)

yields the empirical Bayes estimator, labeled "EBMLE" in Figure 3. As
Figure 3 illustrates, this shrinking value B1 a V1 /(2.345 + V1 ) is loss

coniervative than B,, For large values of k it should be nearly equal
to
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7 BL

1.00

1.00

.70 Bayes, A~ 1
B1 BL V I( + V 1.)

.60

.50EBMLE, ,'ý.345,
B L VL/(A +VL)

.40

.30
Formal Bay"s estimator,

B j given by (4.12)

.20 ~-James-Stain estimator

Hudson-Borgerl B L .01003 /V 1L
.10 mnmx

.00 - 1
1 1 ima2 iw3 1i4 1ia5 106 1i7 iMB

I.Log (V 1)

Fig. 3- Values of the shrinking coefficient B V OA/( + V L) for
several estimators of the form (1 -Bj1) X I plotted as. a function
of the logarithmic variance, for surprise-free data of Table 3
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The two horizontal lines at B1 - 0 (no shrinkage) and Bi - 1 (full

shrinkage to the prior mean) correspond respectively to the Maximum like-
11hood estimator and to the estimator that ignores the data and estimates

- 0 in every case. The other estimator@ compromise between these extremes.

The James-Stein estimator, modified for the unequal variances situ-
ation, has constant shrinkage Bi 0.084 for 1 1, 2, ., 8. This

estimator estimates 61 by

(I k-2 )X1 . (4.18)
E X/

being minimax for the loss function E(t-e )2/Vie It is derived by setting

I U i" /Vo ii u" ei/Vi appl'ying the Jams-Stain estimator (2.6) to

and then transforming back. These transformation@ do not preserve the prior
S•,distribution (4.4), however, so the resulting estimator is unsatisfactory

if the statistician thinks a pr'ooi that the C0 ] are exchangeable. The
result in Vigure 3 slightly overshrinks the comsonents i a 1, 2, which era
well estimated by X and forfeits the big improvements possible for the
components with larke Vi.

The estimator of Hudson (1974) and Berger (1976), which estimates
iby

is minimax for the loss funmction E(ý - . But it shrinks less, not more,

as the variances increase, and therefore can hardly shrink at all, see
Figure 3.

This is the price one pays in order to use a minimax estimator in
the case of unequal variancOiS almost no shrinkage will be allowed on
those components that are not well estimated by X , although they are
precisely the components wheire ihrinkago is needa. Implicit in this
statement is another assertioni estimators that are empirical Bayes
against exchangeable prior cannot be mninimax if the variance of some
component is large relative to the others. A data analyst wishing to
improve on the maximum likelihood estimator therefore must choose between
two very different kinds of astimators. Sine. he probably is more able
to recognize exchangeable prior distributions than to choose loss functions
(and minimax estimators are highly sensitive to the weights Li assumed in

the lose function Z Li( he generally will be better off using

empirical layes estimators. This approach also will permit him to identify
many situations when he should stay with the maximum likolihood esimator.
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The empirical Bayes approach, combined with formal Bayes theory,
has one other advantage that~ is central to this paper. It provides
a coherent method for computing interval estimates for the estimated
parameters. for priors that yield estimators similar to the one of
this paper. these Intervals promise to contain the true magns in m=atFproblems ulth the specified' probability if the true meants'(6 have any
orthogonally Invariant distribution, and perhaps will do so for most
exchangeable prior distributions. Xf further research shows this, data
analysts wi~ll be able to identify many situations for which powerful

* alternatives to the sample man can be used.
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Department of Statistics

,The University of Iowa
i • I• Iowa City, Iowa 52242 .

ow'bet . .g

AJ&TRACT. Two proposals are given that can be used to modify the
method of least squares. The first replaces one of the factors in the
squaring process by thu rank of that factor. While some success has been
achieved in applications with this procedure, the computations involved
are not at easy as with the second ?nethod, In the latter, the square func-
tion is replaced by another function, say p. This p function can be
convex, am in Huber's M-entimatorm, but tt can also be non-convex, as in
the deimending M-estimatora of Andrews and l4empel. The dencending M-
estimator scheme thus requires a better prslimin.,ry estimate so as not to
fin6 the "wrong" soluition. Three examples using real data ,re considered.

I., INTRODUCTION. The method of least squares, that is,

, 12

A1.1 minimizIng • 1"- 10Xij
iul Jul

ham served us well for many yeari But there now is concern about the
influence of "ontliers" as they tend "to pull" the solution towards them
too much, Consequently the residuals (if they are even considered) are
distorted too much, and accordingly the outliers are difficult to detect.
Of course, the situatsin is worse if the investigator blindly takes one of
the many packaged programsa and treats the answers as if they were the
"truth" without checking assumptions, etc.

Two examples exa:

robust line

least squares line

.7
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• *least squares line

• .:

While the first is one that I constructed, the second is like some lumber

data that Boardmuan [3) considered. The investigator of that project at
first fit the least square line, and later Boardman discovered that they
were really dealing with two populations,.

To see exactly what can be gained by robust methods, consider the
example in Chapter 5 of the book by Daniel and Wood. This concerns the
operation of a plant for the oxidation of Ammonia to Nitric Acid, There
are 21 observations, in which the 3 independent variables are air flow,
cooling water inlet temperature, and acid concentration while the stack
loss is the dependent variable, The following table shows the "least
squares" betas, the "least squares" betas with four bad points thrown out,
and two sets of "robust" betas based on all 21 observations.

SOTIMATES OF BETAS

METHOD.2-0

Least squares .72 1.30 -.15
Least squares
(without outliers) .80 .58 -. 07
M-estimates
(Andrews) .82 .52 -. 07

NonparaLmetric
(median scores) .83 .58 -. 06
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While some of the details of the latter two procedures will be explained
later, please note that they give essentially the same answers using A ll• 21 points as doom least squares _&fer 4 bad Voin•~have been removed; Beo-"m-

irgly these robust schemes provide a BIO advrantage in applicationsl

2. NONPARAMETRIC PROCEDURES. While I like "nonparametrics" myself,
there are programming problems and hence wt will not discuss that technique
at length. The idea is this: Instead of minimizing

n2 -

replace one of the factors (Vi" E0 jxij by its rank, say Ri, and

minimize (Y±i- I a , .,

iml jol

Please note that R is a function of the , and hence an

A iterated process muot be used (while there are a few short cuts, the rank-
uinr requires most of the computer time).

Of course, this nonparametric scheme can be generalized easily. Con-
eider the "scores"

a(l) &(a2) s. & . (n)

and then ,

n
minimize I i 1 -

: j.e: (C.) i(i) i, thon a(Ri) -Fi6

(ii) a(i - , (n+l)/2, and if n4l/2 - integer,

then aF-2 0.

The smoring in (ii) is often referred to as "median scores," and these
scores were actually used in the nonparametrtc scheme associated with the
Daniel and Wood example,

One final remark about these nonparametric procedures, if a constant
is subtracted from the scores a(i) so that the resulting a's are such
that
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n i*la(i) 0O

the minimization is equivalent to solving the p approxiLate equalities:

n
x &~3 (R 1W 0, J 1,2,4 *6,p.

While several persons have worked in this area, I believe that Hettmansperger
and McKean [41 have developed the programs the most.

3. M-ESTIMATORS. Huber [61 first proposed these estimators. He sug-
gested replacing, in least squares, the square function p(w) = w2 by some
other p function and

minimizing I P(y - !ixij).
iml Jul

For some theoretical reasons, his first substitution was

P*w) .

That. is,
traight lines

T2  replaced
by

2

-c C

To clearly understand this substitution, let y1 ,y 2 ,...,yn be an observed

random sample. Let us try to estimate the unknown middle e by the method
of least squares, noting the modification as we proceed.

2n n
p(w) *w 2  and min ~,Yie)2 -m
•(• " • ad riniI ( min I- P (yi-e)'

Take the derivative and equate to zero to obtain
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I.n n•

S(-2)(y -0) ( Y - C(y -e) - 0,

where ' * p,. In Huber's M-emtimates (called this because if i /
where f is the density, the resulting estimate is the Maximum likelihood
of the location parameter), we have some diffioulty beca~use the formula
changes at tc". Huber's p• * ' is

'\i ; •'20, W , Q
*(w) 2w 2, -c w oc

i 2o, 0 < W.

To make the equation,

have a scale invariant solution, we need to introduce a ocale factor a
in the following way:

0 .

A familiar a used by "robustniks" is given by

(.6745)s n med(lyI - med(yi)I) MAD%

the median of the absolute deviations. The constant c should be selected
so that if YI'Y2'9''.yn actually arose from a normal population, most of
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the numbers J(yi-e)/s{•c. Values of c around 1.5 or 2.0 are popular.

In the more general regession situation, we could take

Jyi - prel. est. of middlel
a a median (.6745)

(of non-zero
deviations)

where preliminary estimate of middle should be fairly robust. While numer-
ically difficult to determine, the $'t that

minimize x-

would provide robust estimates. However, while not real robust, many use

least squares estimates, which is satisfactory with Huber's procedure.

The equations that we must solve in fitting are, jml,2,.*p,

'Ii ±~lIP[Yi'£BxilJX±xii 0 .

Several iterations are usually required, and a would be recalculated on
each (there are other suggestions for s in the literature [9] that are
possibly easier to calculate).

Also note that if we wish to fit a non-linear function h of some

parameters, may S,,.,•,we simply replace x,, by !Li where

h is h with the i th independent variables inserted (that is, those

observations corresponding to yi). Note in the special case h is linear,
then

ahiiii 0"'j x~j

Hence, in the non-linear case, we solve (by iteration)

n A a

Ol J,1LI*,p

where
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One ir~terestirg w'AY (there are others ~9)of handling this is by
weghednonj-±rkuegs-sl~es.

n r~~~" I
SL (Ye!) i 8

whore the weight

a ~(Ai'5 /(a~) and

are found from previous steps in the iteration (of course, recalculating
each time). Of courso, ordinary, non-linear least squares is

n n ah
min I yields.

IL~ Now we have

etc. DESCENDIhNv M-E8TIMATORS. Several statisticians (Hampol, Andrews,

etc.[1,1) avemodified Huber's 'k function (and, of course, the corre-
sponding p) with functions that descend back to zero.

Hempel a ik:
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Andrew's s :

The problem, in the general regression situation, Is still to solve

0,.' j 0 6, p

Again, weighted (linear or non-linear as is the case) least squares is
frequently used. However, since the corresponding p function is not
convex, the solutions may not be unique. Thus, it is extremely important
to start with a reasonably good preliminary estimate or else the iteratior
process could end up with the wrong solution. One way to avoid the wrong
solution is through the use of Huber's P function on several iterations
before using a descending ý function.

It is also extremely interesting to study the weights associated with
Iv the various observations; they indicate the importance, of the points. In

particular, very low or zero weights (using Hampel's or Andrew's *) indi-
cate that the corresponding points are probably outliers. To see how all
of this fits together, let us consider two illustrations, both of which•- were obtained from the statistici~ne at the Los Alamos Sqi. Lab. In eachcase, the Andrew's sine * function was used.

Ex. 1. Evaluating the lognormal assumpotion on bids for wildcat oil
leases. There were 174 leases under consideration and in each case the
number of bids ranged from 10 to 18. The logs of the bids were taken, and
normality was tested using the Shapiro-Wilk W. In 64 cases out of the
174, normality was rejected. Hence it seemed that bids did not follow a
lognormal assumption.

However, it was observed that there seemed to be some very low (noise)
bids (oil firms trying to det a lease cheap). Hence, using Andrew's pro-
cedure, the middle of the values was estimated and the weights recorded with
each observation. For illustration, here is a samples of n 1 14 after 10
iterations (starting with wi 1 1).
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S_.g(jthA w, (using c-l.00)

15.612 -.284 1.40o
: 15080 -. 86 1.13315i.824 - OT2 1.442

15.872 -.024 1,444
15.896 .000 1,445
14.916 -. 980 1,009 weighted
14•763 -1.133 .881 mean .15,8962
16.148 .251 1. 413
16.246 .350 1.384
16.727 .831 1.122
17.289 1.392 .649
13.529 -2.367 000T
17.458 1.562 0495 outliers
i0.463 -5.433 000&I i!

This was done for each of the 174 leases. The outliers (low, but
noise bids) were eliminated from each. Then normality of the logs tested
again. In this testing, only 5 of 174 cases were rejected. That is, about
3% were rejected, which is in good agreement with a 5% testing procedure.
Thus it seems that bids do have an approximate lognormal distribution once
the noise bids have been eliminated.

Ex. 2. Half-life of Plutonium-241. Six laboratories in the U.S.
started a sample exchange program to follow the isotopic content of a Plu-
tonium sample which had some of 238Pu, 240Pu, 24 pu, 242Pu, and 239Pu,
the latter of which was used as a baoe. That is, for example, values of
the ratio of the contents of 241pu to 239pu were reported and denotedby R. Every 3 to 6 months, each of the six'labs would report the value of
this ratio giving a total of 78 points. They wished to fit the non-linear

-ktfunction h(t) R 0e ' The data and print-out looked like this after 25
iterations.

item wi moB R h

1. 7.62 0 •o4471 .o4470 .00001
2. 7.58 0 o04468 .04470 -. 00002

34. 4.20 16 .o0168 .o4191 -.00023
35. mo .o4271 ,o0l19 .00o80

o utlier . A,:

There were 6 points with zero weights (out of 78). The interesting thing

is:that upon checking these "berl" points it was discovered that all 6 were
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frcm one lab, due to a technical difficulty. (Incidentally, the half-life
seems to be about 14.4 1 .1 years. Without robust procedures, this was
about 14.8 1 1 year.)

While there are move improvements to be made using these robust pro-
oedures, they already provide substantial proteation against outliers or
bad data points and could be used in place of standard least squares proced-
urem; for examples, regression, ANOVA, time series, and fitting by splinet.

5. ACNOWLEIgMET, Robert V. Hogg's research on this topic was sup-
ported in part by NIH grant GM 22271-02.
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ESTIMATING RELIABILITY FROM SMALL SAMPLES

Dnald W, Rankiin
Arn Material Test and Evaluation Directorate

US Army, White Sands Mis sile Rang
White Sands Missile Range, New Mexico

ABSTRACT. Exact probability fornulae are developed, with no restrictive
aseunptions, for use with tests which produce data of the go-no-go type.
Although universally valid, the formulae are particularly apropos when small
samzple size is dictated. Since a proraimMable calculator greatly facilitates
the solutions, pr•gramming suggestions are included.

1. INTRODUCTION. Often it is found that military, economic, or tine
limitations preclude the employment of any -testing technique which requires
that a large sample be taken.

Statistical treatment of small-sample data, always difficult enough, should
not be degraded by requiring unnecessary postulates or by using foriulae which
yield only approximations. Consequently, the methods developed herein ae based
on no assumptions other than that of %andcm sampling, and the formulae yield
exac answers.

Increasing availability of programable calculators with external program
storage makes this approach completely feasible. With this in mind, programming
suggestions ase included where they seem to be indicated.

Since the formulae are exact, there is no theoretical limit to sample size.
There is, however, a practical one, depending jointly upon the size and operating
speed of the computer or calculator and upon the ingenuity of the pzvzammr.

It may prove helpful to insert here a few remarks on notation and
terminology, since therm are to be found variations in the literature.

Factorials are variously indicated as
n(n) "

tn.unlm • lI .2*• **.n

The symbol In is chosen for use, since it acts as parentheses and thus reduces
confusion when parentheses are used for another purpose within the same
expression (e.g. Equation 38).

Generalized factorials are found as n(m) or (n) m

n(m) n(n-l)(n-.2) * " (n-m'l) *

will be used.
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Binomial coefficients appear in many ways:

Cn,k) .. n a In

The symbol Clnk) is adopted, since it can be typed easily on a single linm.

The indefinite summitiori symbol is taken to mean

,E(x) a *(a) + 0(a&+) + 4.- + *(x-l)

aseries which consists of exactly x-a term., The indefinite finite integralthus is

1A:(x) a EOCx) + C

Here, A"*(x) is analogous to ff(x) dx in the infinitesimal calculus.

* The generalized notation used for a series is

SaT +T +T +,.+T +.,

If there exists some value of i such V"it T * 0 for all j ' i, the series

By "insignificant" is meant "insignificant to the computer." For examrple,
if a series S is being summeud and S~ represents the sum of the first I termis,
T is insignificant if it is too small to affect the least significant digit

of S, as -r~ms -nth calculator.

2. BINOMIAL PROBABILIT. Sometims the testing technique permits smapling4
with replacement, Even wheR-replacement is not possible, the same condition canbe achieved (matheofnticallya by assuming* a population of infinite yize. In

Ther ac:t of seampling doenot alter the r• Arsan theristu of the population.

The - -- ------i h €acl~•

wTEih icmnt belie the 'statement of Paragraph 1, ssne the opposite case on i when
an infinite population caninot be assumed i also is covered in Paragraph 4.

a~2.58
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Given the above condition, let us specify that in a certain population, the
probability of observing a success is given by r. Obviouslyb the probability
of obsaeving a failure s given by 1-r, which we shall call p.

pal-:' .

It follows that (Cp?)n , 1. Thus, if we draw a sample of size n, the
F probability of observing exactly k failures Is given by the appropriate ter*

of the binniial expansion

(,+,)n C(n,O) p + C(nAl) pn- r + M0n2) Pn-2 r 2

+ ... + C(n,n) rn

Since,
n nk
. C(nk) p-k rk I . (k 0 , 1ý, 2, *a, n) I ()

Aý knO

it may be said that

C(n,k) ~~~

defines a probability function in the discrete variable k.

Noting that

C(n,k) C(n, n-k) , i

we define *1

p(k) a C(n,3) pk (U-) n-k a C(n,k) rn-k (l.r)k (2)

as the probability of observing exactly k defectives (failures) in n trials,

Unfortunately, the problem rarely is that simple. In most test designs,
it is possible to control the value of n arbitrarily, and to observe the value
of k exactly, but nothing is known about r. A probability function in r is
required.

ji.'

w~eTo-montaining p *
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Now r can take any value within the prescribed linmits, 0 < r <
i.e., it is acontinuous variable and necessarily

/f(r) dr I 3
r.O

describe. fVz), whatever it my turn out to be, as the required probability
function in r. Setting

g(r) aC(n,k) r U-0k (4)

inr. In order to discover a relationship between g(r) and f(r), we must

evalate 11 (r) d * C(n,k) I/ n- (lrOk d (5

To integr'ateft

let xn-k (l-x)k dx

u *(xk

and d.nkd

Then)

du a-k(l-x) 1 dx

and

V* Cn-k+l)-1 X,-k+l

*The value of I xn-k (l-x)k dx is found in many tables. But a program for

0

desirable to show the complete process of integration. These two definite
integrals are sozmetimes referred to as the complete rid incomplete Beta-
function.
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Note t1At n and k amintegers such that 0<n rk O.

fi'-k (1-x)k dx *nk1 .xn--1 (1-X9I, k41 f,-nk+l (2..x)k- dx

Another .siI.±' integration by, paits is performad upon the last teomb yielditng

p-k Cl-x)k dx' 1 )n'.k+3 (.X)k,

k 12 n-k+2 (lx)k- A

+ i ~ l k2dx

Iterating k tirre results, in

fen-k jlxkd -1 nr-+ , 9 .Xk + __ _k n-k2 ( -2.k-

+ * + (nk~k ;-k+ 2) xn-k+k U-0k-k41

+ M-1 +2)(k+l) fx-k~k cl..x)k-k dx 6

But now the last term sulxntu to integration. It can be rewritten

It now becomes very easy to evaluate the definite integral

)1,- (1lx)k dx
X8O

since at the lower limit) all terms become zero, and at the upper limit No 1),
all tent~s exe~ the last bocome zero., Hence

O-k lklX)k dx ___2

jn~i (n+M)(Fj) 8
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Subotituting this expression into Equation (5), we arrive at the remarkable
re.sult

!1 1 1'.

g(r) dr .P C(n,k)rn'k (l-r) d n (9)
rvO 0

C, L.e., / g(r) dr depends upon sample size only? And thus, the desired

probability function in r is
+1:

f(r) n (n+l) g(r) = In r (10(1-

That it be a useful probability function requires that other definite intepals
can be coff ut r7-ubstituting Equation (7) into Equation (6) and multiplying
through by (n+J)C(nk) enables us to write

x,-k (1.x-k~i k~i '

Ixn (l-x) dx * C + I C(n+l,k-i)xnllk+ .x) (11.)

Without loom of generality, wni can choose the lower limit (of the definite .•

integral) to be zero. The function there conveniently reduces to the constant
of integration, Also, to avoid progranding problems, we can restrict the upper
limit to values less than unity. Thus, for an arbitrary value of z,

; z z~n-k~l k i(0. <i 12 '•.I NO• dr m C(n+l,k-i)z (-z)' (0, Z 1 (2

frx ) is

expresses the probability that r c z, The case of z z I already has been
covered by Equations (3) and (10), i.e.,

/i•I f(r) dr * / (n+1)C(n,k)rn'k (-Ir)k dr 1

rvG 0

The ame formla (Equation 12) can be used to solve the inverse problem;*
i.e., when the level of confidence is specified. Set

z
Lab- ~/ f(r) dr (13)

then solve for z.

ASee Paragraph 5C.
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3. ESTIMATES OF THE RELIABILITY.

A. The Function f(r).

It is worthwhile to examine the probability function

k~n-k k •
f (r) * (n+l)C(n,)r (1-0) , (10)

A typical Sraph (n f 7, k a 2) is shown in Figure 1. The area under the curve
is divided into quarters by the ordinates at r a 0.567, 0.679, and 0,779, A

imaximm occurs when, exclusive of the end points, f`(r) a 0, i.e., when .. '

S- z 0. We shall call this maximum the "maximum likelihood
estimate" of the reliability and identify it with a circumflex ( I) t Z
computes easily to be

A

rC (14)

When n-i ) k 1 2. the curve exhibits two inflection points, equally spaced about
the maximum. They cocur at

As will be seen latet, they are of interest 'to the rogra:me), Figure I shows
inflection points at (0,530, 1.55) and (0.899, 1.01 *

When k * 2, only one inflection point appears at

A kar I•,,,-- )i
. r ,n

(Csee Figure 2),* Any program must take this fact into account.

B, Level of Confidence.

It is the nature of a function of a continuous variable that an area
below the curve (ie., a definite integral) cannot be described by a single
pint. A pair of points is required.

When the function under consideration is a probability function,66 the
ordinates erected at the selected pair of points enclose an area called the
level of confidence. It is proper to think of a level of confidence as an area,

"Quarl~esr a 0.607, 0.799, end 0,870. rp, at (0.714, 2.125).

b
**i.e., when / f(r) dr a 1.

a
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as a definite integral, or as a probability. Again referring to Figure 1, it
can be stated "at the 50% level of confidence, 0.567 < r < 0.779" or "at the
75% confidence level, r > 0.567." In the latter case, r z 1 is the second
Smember of the pair.

Selection of a level of confidence may be, and often should be, quite
arbitrary. However, deferment of this selection until after preliminary test
results are in, in an effort to "improve" the datap usually can be regarded
as a reprehensible practice.

When selecting a confidence level (in advance, of course) it sometimes
helps in vizualizing it, to couch it in terms of ordinary gamblerIs odds,
rather than the more comrmonly used decimal fraction. Thus, a confidence level
of 0.96 gives odds of 24 to 1 against the analyst issuing erroneous advice.
At 0.90, the odds drop to 9 to 1 and at 0.7S to an alarming 3 to 1.

However, there is another side to this coin. Consider what happens when
a 100% level of confidence is chosen. Obviously, the pair of defining points
is located at 0 and 1, reaardless of the' nature and shape of the probability
function. Selecting too high a co~iden'e evl prduc-is a strong masking
effect Sy driving the defining points (limits of integration) far into the
tails. A higher-than-necessary level of confidence may be a luxury the analyst
can ill afford.

In summary, there are two approaches for handling the data. The first is
to select (perhaps arbitrarily) two values of the argument, then compute the
level of confidence (area) between them. The second* is to choose a confidence
level, then compute two values of r which will bound it.

C. The Case of Zero Failures.

Specifically, when k 0, the function degenerates to

f(r) a (n+l)•n . (16)

Additionally, given n > 1 and r > 0,

f'(r) 0 0

and the algorithms which will be developed will fail. The function for n:7,
kO is shown in Figure 3. Note that there is no point of inflection and no
maximun in the usual sense. However, we still can define

n n

* See P jiph 3D ard the opening remaks of 3X.
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Quartiles at r 0.841, 0.91-7, 0.965
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The solution of this case is very simple and can be effected with an
ordinary table of logarithms, since

k5 z zn+l
/ f(r) dr z e,17)*0

The practical solution possibilities are limited to two.

(1) Choose r r z and r 1 as the two values of the argument, z
being arbitrary but less than 1. Then the level of confidence, L, is given by

L m 1 z n+l (18)

(2) Choose L. Then set r 1 as the upper bound. The lower bound,
r z, is given by

1
Z I (19)

If the programner wishes to include the case of zero failures, he should
write it as a separate sub-routine.

D. The Best Estimate of the Reliability (0 < k < n).

When both values of r are specified (r a z and r n z ), the problem is
* straightforward enough, Simply use Equation (12) twice to conpute L.

z z
La!' f(r) dr- I 1 f(r)dr . (20)0 0

If either z -0 or z z 1, then Equation (12) need be employed only once.
V I a [I

* But when L is specified, there are an infinite number of solution-pairs
nwhich satisfy the required condition. The usual way out of this dilemma is to

set one of the limits to be 0 or 1, then solve Equation (12) for the other.
Newton's method of successive approximations is well-suited to effect this
solution. An algorithm will be given which converges quite rapidly upon the
correct answer.

Sumetimes a confidence level is specified which arbitrarily excludes equal
areas from each end of the distribution. This is equivalent to two solutions
with z 0.
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But a profgrawble calculator makes practicable a mor elegant solution*
Let it be called "The Best Estimate of the Reliability." Briefly described,
it is this: The level of confidence being specified, the best estimate of the
reliability is given by the particular values of z and z which minimize the

difference z - z . We shall designate them with a tildeathus:a I

or

The best estimate of the reliability possesses several distinguishing
properties:

(1) The solution is unique.

(2) z -z is a minimum, by definition.

(3) f(M ) * f( ) . (21)

That this is true is evident from Figure 4. If either ordinate iii displaced
away from the maximum, the other must be displaced a smaller amowit to conserve
area; i.e., z - z increases. This-important equality is made use of in the
solution. a p t

(4) 2 and I always lie on opposite sides of ý. Thus is avoided the
absurdity of excluding r frcm the solution area. This property also is used in
the solution.

(6) Any included value of r is more likely than every excluded value.

Note that when k ce 0, the solution is degenerate.* This should not be
surprising, since r a I yields an absolute extremal, not a relative one.

E. Comparison of Methods.

It is ommon practice to specify L, then set z 1 1 and camute z . Undera

these conditions, z is a function of L. Although this does not invalidate the

mathod, it indicates that due caution be exercised, lest the published value
of z reflect little more than the analyst's whim. The method can make only one
kind of statement, viz. "At the 75% confidence level, r exueade 0.667." No
attempt is made to predict what r actually is (it may be far from 0.667) and
nothing is said about the shape of the distribution, save that the right-hand
"tail" surely is included. The nrthod might be used by a manufacturer or userto test for cMpliance with a minimum standard.

Mee P araraph 3C.
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On the other hand, the best estimate of the reliability states "The
maximum likelihood estimate of r is 0.714 and, in any event, at the 75% level
of confidence r lies between 0.519 and 0.867."

The values of z, - z are 0.433 and 0.348, respectively.

The "best estimate" might be used to evaluate a new device or procedure,
without reference to a pre-established criterion.

In a nut-shell, one method measures, the other tests for compliance.
Before choosing between thwn, the-nysi must decide-w- sort-:uestion
he is attempting to answer.

F. The Effect of I ncreasing Samle Size.

What happens when the same failure rate is observed in a larger sample?
This is graphically illustrated in Figures 4 and S. It is observed that, ? is
unchanged, but f(r) increases. Also, I and a both move inward toward r
ise., I - ' decreases. It is clear that enlarging the sample size will

2 1
increase the precision of the "best estimate." If n becomes great enough, the
graph of the function virtually is reduced to a tall spike at r,

4. HYPERGEOMETRIC PROBABILITY. When test conditions do not pertit sampling
with replacement, and when the population is known to be finite (and measureablel )
in size,* the theory of Paragraph 2 is not applicable. We must perforce develop
another method for dealing with sampling without replacement. To parallel our
earlier statement, we say:

The act of sampling measurably alters some characteristic of the remaining
population.

In this Paragraph, we shall not speak of the reliablity, nor sh-ll we
employ as a symbol the letter r. (As will be oeen, the analogous quantity is
I - x/N.)

Given a population consisting of N items, x of which are defective, the
probability that a sample of size n will contain exactly k defectives is

IN-n L.alH-x L&
p(k) a p(N,,x,n,k) w ~ kIn (22)

Notice that x and n are interchangeable in the formula, which, at our convenience,
can be written in either of two ways:

p(k) C(N-nx-k).C(nSk) C(N-xn-k) .C(x k) (= C(N,x) "C(N,n) (22)

"feg., test-firing guided missiles.
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But in the usual case, N, n, and k are known and it is required to est1i:ate
x; i.e., x IS THE ONLY VARIABLE. What is needed is a probability function in x.*
Now Equation (22) in any of its forms gives p(k) as a probability function in k,
but not necessarily in x, It is observed that with n and k being held constant,
p(k) serves as a density function in the discrete variable x. In attempting to
disclose the relationship between p(k) and the desired probability function in

. x -- which we shall write as PX pX(Nxn k)-- we must, as the first step,

evaluate the finite definite integral**

k+N-n
a Q Qx(Nn'k) u p(k) , (23)

a series consisting of N-n+l terms. The limits of integration are obvious, since
k defectives already have been observed, and N-n is the population remaining.
Substituting Equation (22) in its first form for p(k) and factoring out the
constants (which do not contain x) we find

IN-n I n k+N- (NX(n-k) W 24
x n-k (N-x -n24

where (N-x)(n-k) and x(k) denote generalized factorials.6** An expression for
this integral is ob'ained as follows:

(n-k)ux X (N-x)(nk

and
f~):xk) ,

Then,

C + EUx OW) a 6'1uN(x) ( (EE' - l)" uxW) (25)

"of the discussion following Fquation (3), Paragraph 2.

**i.e., sum the finite series over all possible values of x.

"A**The basic reference for the following derivation is George Boole's
"Calculus of Finite Differences." Boole's notation (third and later
editions) is used throughout,
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where, teniporarily, E operates on u alone, E on * alone. Continuing,

(€'- I)-Iu~x*x) [ EC1 + 6) E' - l u'u•o(x)

)4E
+ (-j Y 0 x

I Ai E + (AE)' '2

From Equation (26) we can write the desired expansion, dropping the primes as•'i'i no longer necessary. )

NOW(x ' -C + VOW(x - AuXEIO(x4+l) + AluXESO(x+2) -se

I. '" + (-l)JAu E•i•+'(•j) + "" (27)

The series of Equation (27) will terminate after, n-k+l terms, fewer by N+k-2n
than that of Equation (23). It can be used to sum any number of terms of
Equation (23) or Equation (24).

It w:il prove useful to list a breakdown of the term in Equation (27).•.•, ,Thin is done below.

u .2(N-x) (n-k)

*Auxu (n-k)(N-x-l)(nkl)

i ~Alux X (n-k)(2(N-x-•(nk2)

i ~ ~(-I)JAJU (n-k)( (N-x-J)(nk•

C_ An-ke-k .n-

.u 

(28)

(l nekk f m ,n , n-2



S(k+ 

2)

( (k+2)

E'~(~) U ~ 4 )k+ 2)

(k+3)

"40' (k+ j+l)

nk x+nk . (x+-

(x+n-k) (n+l) (29)

Noting that when x < ks (x) x W 0, we have

k-xOu•(x) 0
X.0

k (

F-rom the definition of the operator E,* we have

k-i
Euký(k). u3(o(x) 0 o -c + 0 + 0 +

X'0

_ since all E£f(x) vanish when x = k. Thus C a Ow,* and

EuXOWx) a uEON(x) - Au EO'(x+l) + see (30)

holds for all admissible values of x, i,e,, k x k + N - no

**A more rigorous demonstration in given in Appendix A.
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Again rezmubering the definition of the operator E, we can evaluate the

exprossion in Equation (24) as follows:

k+ -n (n-k) k)()12k(N-x) ( k ÷Nn (*N-n) + (n-k) n (k+N-n)( (

Utilizing Equations (28) and (29) to write down the full expansion, we
obtain

k+N-n 
(nk)2 (j)x (k)(NknNk.2)(k

x~km-xon') , OcN~n (k) l

(N-n+k) ( Nnl)

(N-x (n-k) + (k) ( In-k) I (N'n+k+l)(,

'+ ( 2n-k)( _2) (N-n+k+2)(k+3)

(k+3)

(n)N(nl)
+,se + (n-k)(nk .nl(nkl (32)

ToSinte 0 s ie , and esnt e rn-k is a frctor of every lat of u equaton(9 n

k; jk Ck+l)

(x " N-n+k. The first term, of course, is (N-n+k). Whence we can write
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k+N-n (n k) (k)1 E
S(N-x) x l+ + r r

xak

+ + -kl (N-n+k)

Ev n-k+fE
a I E N-kk

r. 1E \fk+11

*1 -kjJ -L ~ )n j (N-n+k)

*In-k { (O)(4l N-n+k) ('34)

From the basic definitions of the operators,

fn-k+11
J(E *p(y) n-k lp(y+n-k+l) , and

* k+ N-n x)(nk x(k * n-k znk O(N+2.) *(35)

xnk

Again referring to Equation (29),

k+- (nk (N+l) (n+1) I n-k IN+1 Lk
S(N-x) ~ x(k * n-k -- 1 (fkl -.---- (36)

ISubstituting this value into Equation (24) yields the desired integral
n+-J-m N+1

QX xmk

Fin*ally, the required probability function in x is

L -n+x+1 Lx. 4~IL
*p (Njxsnjk) * P(k)

*C(N-xb n-k) , C(x k) (38)
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Note that this probability function differs by only a constant multiplier
from the original function, p(k), given in Equation (22). However, x and n no

I! longer are interchangeable, due to the presence of the factor n+l.

The technique of Equations (27), (28), (29), and (30) can be used to sum
any number of terms of the probability integral, Thus, provided only that m
is some proper value of x, (kcm < k + N- n),

LN-n Ln+l M1 (ml k n

gives the probability that FEWER than m defectives will be found in N. As
previously noted, (Equation (27)), the right-hand side of Equation (39) will
contain n-k+l terms. An alternate expansion for Eum¢(m) which sums in fewer
terms whenever m < n is given in Appendix B. This alternate expansion is

;Ji, • preferable for progremirnlng.

% The graph of the function is, of course, a histogram composed of rec&tangles
, 1 of equal width but varying height. (Figuze 6). For any arbitrary value of x,

the area (integral) of the corresponding rectangle can be computed by Equation
(38). The combined area of any number of consecutive rectangles can be computed
by Equation (39) and interpreted as a level of confidence.

•'i The inverse problem is not so clear-cut, however, since no attempt is made
to attach meaning to "a portion of a rectangle." Thus, any assigned nonfidence
level must include the phrase "greater than" or "less than."7Rs~eATed application
of Equation (39) to successive values of x will reveal the correct answer. It
may be useful to employ Equation (13) to obtain a fairly close first approximation.

Borrowing the terminology of Paragraph 3 and referring to Figure 6, we can
make statements like:

"That x < 12 exceeds the 80% confidence level," or

"Best estimate of x: A * 7, and at the 0.74891 level of confidence,
x 11 andx 4;1" i.e., 4;jx.ll.

S. COMPUATIONAL PROCEDURES.

A. Significant Digits. The occurrence of large factorials really permits no
alternative to computation by logarithms. Now two processes which are prodigal
of significant digits are subtraction of nearly equal numbers and computing
antilogarithm.* We can be subjected to both hazards within the same algorithm.
Therefore, it is suggested that computations be carried to 12 or 13 significant
digits. For machines which do not compute logm-ithms accurately enough, the
following is auggented:

U•-"100T o of the order of 5300. Four significant digits will be lost when

subsequently passing to an antilogarithm.
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LI L

fii*l~i L ~H 'Il 1:~1 in

I i i I',

i~'L I

21 1917 15 13 L 1 9 7 5 32

x x xPx

2 0.01915 12 0.05952

3 0.04547 13 0. U4522

4 0. 07117 14 0,03246

5 0. 091,66 is 0102185

6 0.10475 16 0.01t36Z

7 0.10999 17 0,00772

B 0.1.0806 is 0.00386

9 0. 10034 19 0.00162

L0 0.058B54 20 0.00051

IL 0,07440 21 0.00009
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Express the number in scientific notation thus- 378 = 3.78 x 102. If
the resulting units digit is 1, proceed direotly. If it is 2, 3, 4, or 5, divide
the left-hand member by e 2.718 281 828 459, intending to add Inee 1 to the

result later. If the units digit is 6, 7, 8, or 9, divide by el and add 2 later.
Call the resulting number y. For our present exauple,

y 3,7 : 1.39 i!

Now use the transformation

The series,

** + I;+ + (40)

will converge rapidly.* The exponent is recovered by adding or subtracting
inel0 = 2.302 585 092 994, a suitable number of times.

B. Stirling's Formula for In. Bernouilli's Numbers.

Stirling's for=la for In is

nI
enCn 2r (41)S~enS 

:

2.:

""whaoe S is the asymptotic seies

S M i-÷ -+ + ... 4<2)

SThe Bj are Bernouilli's numbers, the first six of which ame.:

i 1 691

I "To continue the example, a - 0.163.o and the eighth tam~ is 1.02 xi0-" '



%rI •••";••'::'"""•................•,,............. :,,.,, :.... •,• ......... , .......... ..............

For thirteen-digit auc, oacy, n > 11 requires four terms of the series S,
n 39 but -three teima. Thus,

Ine Lna h31njC27rn) + n(lneri-l) + n[ ~ -~r] f > 11

or

V"ie Ln hln,(27m) + n~nn1 + -An (I - 1 >3 ('43)

Logarithms of smaller factorials must be coruted directly, of course.

C, Newton's Method. For the solution of otherwise-difficult inver.ses,
Newton's metho of successive approximations is indispensable. However, certain
precautions must be taken by the progr.arr.

Ideally, the graph of the function is an ogive. But it serves the purpose
equally well if two values of the argument can be found which surely bracket the
desired solution and between which the function behaves like an ogive .*

f f(x) Al

inflection
point4

f(z)

I .

a z x b

FIGURE 7

The basic operation, of course, is

•+f(z) - f(xi)

'.e"te nbounded by a maintwm and a minimum, with a single point of inflectionbetween,
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f(z) being given, and from which it is required to find z. Let the first
aprdimation be taken at the inflection point. Since the slope is steepest
thereo it insures that the approxinate solutions will not overshoot the true
am. Thus the xi's wilI remain within bounds, avoiding a spurious solution or

Were we to express the cumulative probability of Equation (12) as a
function of z

F(z) I N(r)O r , (45)
X-0

we would find that its graph is a true ogive, that its derivative is simply
F'(z) a f(r), and that the inflection point occurs at r.

D. Summation of Series. Many of the formulae herein developed for use
i•'"I involve the sumnaion of series. A convenient way of handling this type of

St computation in a propgmmable calculator is to discover and employ a term-to-
term recurrence relationship.

SUsually, infinite series offer no problen. For example, in Equation (40)
"we can choose to assign only odd subscripts to terms, whence i

•, i Ti~+2 a T

0(i) is knMwn as the recurrence ratio, It is of most use to the programmer
when it is a constant or a function of position only.

Finite series ostensibly offer a choice -- they can be summed from either
and, Not really. When there are only a few terms, it probably makes no
difference. But when there are many, the least term always should be left until
last. There are three compelling reasons for this:

(1) The earlier tte large terms are computed, the less accumulated I
round-off or truncation "error •they will contain. ,1

(2) When employing a recurrence ratio, no term can contain more
significant digits than'the first term. In a fixed point machine, computing
the least significant term first may result in catilete disaster.

(3) If some.terms are insignificant, it is unnecessary to waste
computer time on them, provided significant terms are couted first,
In this case, the effect is te siM to summing an--inte series.
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E. Exiting a Loop. Many of the fornmlae developed can advantageously
ffTie Oe an irative process in the cmcputation,* A program mts empl soy lor
device for terminating this process ie., exiting the loop. Basically, there

an' two cases which must be treated.

The first occurs when the number of iterations im known, or can be
determined readily. The programmer marely finds a factor' (or sets up a
dummy index) which is known to reach zero eventually, and test. it.

The second (and more sensitive) obtains when the number of iterations
depends upon the results of the calculations. It is a mistake to test the
untreated single t•em, since it may become insignificant to the result, but
yet not zero. It is tempting to test the difference between two successive
solutions, but it is possible (particularly with Newton's method) to reach two
alternating solutions which differ only in the least significant digit. A
nearly foolproof procedure is to establish a maxim=m allowable error (call it 8),
subtract it from the absolute value of the quantity in question, then test the
sign of the difference. it y-magnecessary or desirable to choose a 8 which
squander. two or three (ostensibly) significant digits, in order to hasten the
exit,

*E-laoies: Srmation of Series, Newton's Method, Factorials.
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Ki: I APPENMIX A

EVAWATING A ONSTANT OF INTEGPMTION

Eqjuation (27) states

Euxf(x) * -C + UxEO(x) - AUx11(x+l) +'Aux •b'(x+2) -

+• +.. l r÷,i (x+j) + ... (27)

and it in required to evaluate C, the oonstant of integration.

Now the admissible values of x are
'I ~k• x"<k * N " •

and the fastidious nay object to the developnmnt and inclusion of an expressionlike :

k-iJ. ki• uX0(xl 0 .

So, let us increase the upper limit by unity. That the expression

has a real sum, and that the sum is

-X Ux#(x) a (N-k) (n-k) L•c

thr ca be• no doub. 1

Continuing in the manner of Equation (30), we have
- I''

ru,+,O(k+ll z UXO (x) a (N-k)(n-k) L=k
' ~XE 0 •

; •+ (lk.ln-k) • Lnk-• 2•
-C +"(N-k-1 + (n-k) (N-k-2)

(2 (n-k2 (k+3)a
(n-k)((N-k3) 2 +
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If we transpose -C, then

Ik+h

is i factor of the right-hand side, so that

(N-k-l) + (n-k)(N-k-2)(n-l)(2 (n--, (nk (0-)nk)L"L

'1i + (n-k) (2)(N-k-3n-k-2) + ,,, + (nk)(n-k(N-n-l)(J

If we substitute x u k~l into Equation (28), we obtain exactly the succession of
toems exhibited within the braces above. This allows us to write symbolically"(-k r-{ (')hkn-lln

C + (N-k) Ln-lk L Lk I+ + A'"- A ..

n-k+n

since, by Equation (28), A * 0 for all x.

C.. C + (N-k) Lk. Lk E-uk+, LX u * Ik (N-k)(n')

i~e., C 0 0. Q.E.D.
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APPENDIX B

MN ALT•ATE MANSION OF EQUATION (25)

I. i: An alternate expansion of Equation (25) follows. As bfors, let
Ux (N-x)

and
•,;,I x(k) :;

"OW(x)

C + N,(x) £l'UO(x) a (EE - l)l'uO(X) , (26)

"where, temporawily, E operates on u alone, E' on 0 alone. Continuing in a•i ' dLfferent manner,,
(dEE - l)-'ux,(x) -E(l + V) - lJ13u•,(x) z (6 + A')'*uxx)

+ " " • " ÷"+ . u O,(x ) (B-1)

From Eqyat.on (B-i), we can write the desired expansion, once mrse dropping the
prinas as no longer necessary.

Eu, (x) : -C + ux..-1 (x) - ux. 2Vo(x) + Alux-3 Vow

see _.. + (_i)JAJ rjl W (B-2)
- e.- CJ-ii~ E•+ 1•(x) + '"m(B2

Again it is useful to list a breakdown of terms.

"2' 8
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Ux- (N-x+ 1)~

-Aux-2 (n-k)(2)Nx+)n2

A :x3(-) Nxl

("i )n-Jk~nux-n+k-1 I n-k

ux-n+k-2 U0 
(B-3)

*(x)

C k+ 2)x

(k+23)

(k+3)
E x

0k 3

En-k~l (x (n+l)
ON Cn+1) )(B4
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Following the method of Appendix A,

E uX0(x) (N-k) (n-k) Ik Eu"- k+(k+l)

-C + (N-k)(nk kl(+ 0 + 0 -(B3-5)

•[, I k+l.'

since all ZO(x) vanish when k + j> x.

Simplifying,

(N-k) ) k- 2Euk+4 ¢(k+l) -C + (N-k)(nLk)

and again C a 0. Thus, E•uation (B-2) can be written

Eu4(x) " uX-1ZE(O) - Au. 2E'¢(X) + X-2 (B-6)

which holds for all admissible values of x, From Equations (B-3) and (B-4), it
* •is apparent that when substituted into Equation (39), the expansion never willI i contain more than n - k + 1 terms, and will contain fewer whenever m c n.

Other expansions are possible, but usually prove to be more cumbersome
than the two already developed.
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APPENDIX C

IPROGRAM PLANNING - BINOMA

1. NTRODUCTION. Reliability is expressed by z or by r, depending upon
whether or not it is a limit of integration.

In general, loops will be exited by comparing the difference between two
successive iterations with some standard, 6. (See Paragraph BE.)

4i" Nearly every formula of interest is greatly simrplified if expressed as
a function of f(r). Thus,

P~k) =n+T f(r)

f ' (r) [n- rf (r) m 1 [n - ]f(r)

z
I f(r) dr T + T + T +."

where
Tm zf( z)

* ,and

'h * k, h uk-l, h k-2, etc.

Note that if n and k do not change, there is no need to compute

"I" I nfl llflLD-.lfIn 11

mo~re than once,
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2. COMPUrING L (z sp~ecified). Equationh (12) and (13).

Enter data

yes 3p sub-routine for zero. ka11ures

Oo2pute ln0

Cor~pute (n-k) Inez + X ln*,(1-z)

Add the aboveo yielding lnef(z)

Conpute and store T

Set h1 k

Flag

Conpute T i~1 and add to partial mum

decr~ement hi

no ~return to flag

yes

Subtract final stun from 1



3. COMFUTING z (L specified). Equations (12), (13), (44), and (45).

>1 Enter~ data

kyes -.-- sub-routine for zero fai.lues.

Ln_+l
Compute and store in,

Cmpute and store r 1 - . This ist he fir•t eatite oz,o

,Add Ins yielding Inef(z

Compute and store T
I1

$eth ~k

Compute T and add to partial sum

* Decremeant h

is sum no so return to Flag
MO~WZE?

1 ye - f(zJ ) dr L

Compute z8-
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s~J

IG.,IFI no -*, end
G5E>

yeF

j+. z + Az Store.

Return to Flag r
4. COMPUTING "BEST FSTIMATE OF THE RELIABILITY." CL specified). It might

be sid that the method employed is (Newton)2 "Therefore, it is nmndatory that
the program include realistic exit routines, in order to keep computer time
within reason. Both i and i are computed. Equations (14), (15), (21), and

Paragraphs 2 and 3 above are employed.

Enter data

yes - o generate error message

no

Cairpute and store lne[X-

yes -- no, k > 1

CCompute and store: Compute and store:

I k (1 L) b ,+

2k0



The b, are the successive estimates of I.. The program will not run
with bi 1, hence the above split. To continue:

SCanipute (n-Ic) lneb 1 , 1, ne(l-b±)

Ccmpute and store f(bl)

To compute I f(r) dr, call "integrial" subroutine. Store.

Set a r.,

0 P1
Flag M2i
Compute (n-k) Inea, + k Ine(1-a

Compute fa)

Compute f"(a• n - f (a, )

f(bi) -fVa)
j+1  aj f'(a)

(a)z f(b) no - Preturn to Flag [

yes

a4
To compute Ia f(r) dr, call "integral" subroutine

0
L - 0/I f(r) dr + IJ f(r) dr f "(a)

Abi0 0
f(b.) f - f"(bI)
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NOTE Since at this point in the solution
f~a) f(b), the second fractional

I expression reduces to

,41 Ik

X a x

IGNIFICANTh. yes -P. return to Fla
SGE? 

a

no

end

Subroutine "integral"

From x and f(x), compute and store

T C n+l-k)-l x fVx)

L set h *k

nlag~

*.CoMpute and add to partial sum

¶ht xT

Decreuwnt ht

I ~~~~292 - ~ .~



COMPlLEE n~o - m tuin to Flag r 3

yes

Returm to main~. pmrp'm,
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APPE2DIX D

PROGRM PLANNING - HPREMTI

I.- INTRODUCTION~. The variable x is to be associated with the probability

of a specific n~zrer of defectives, The variable m is to be associated with

the cumulative probability that FEWER than the stbated number of defectives exist.

In general, the series to be sa.mrad ar'e a.1l finite, but when both m and n

awe quite large, it will nwasureably hasten exiting the loop to compare the term

with scor arbitrarily wall standard, 8, rather than zero.I The formulae of interest are conveniently expressed as functions of

C(x k)C(N-x n-k) D)

p(k) *~ (D-2

pxx x Tj + T a+ T 8+ * (fl-3)

where

T C(rn k+l)C(N-m+1 n-k)

rn-k N -m~l 0pm (D-4)

and

Ti~*rrv- (k+l1) (* * Ti:i

Note that in implemnwting th~e ,a4ove formnula (D-5), the factors of the
numewrator should be comrputed before incrementing the index, the factors of
the denominator after.* In fac-tunder this scheima the denominator of
Equation (D-4) b'conmes equivalent to that of Equation (D-6)9 and the index
can be set to k+1 before computing TS
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2. COMIUTING pX (x ARBITRARY). Equations (38) and (43)

Although the computation of nine logarithms is involved, thers should
be no difficulty encountered worthy of notice. It is preferable to compute
anid add W± the largest logarithms last. (I N+1, LLý and ALN-x will be

L the largest numbers,)

rn-1
.CO..UTING px (m SPEC'IFED). Equations (39) and (B-6)

x3ck

The prog plan is left to the reader. Sufficient suggestions should
be found in Paragraph 2, Appendix C, and in Paragraphs I and 2, above.

4. COMPUTING m (L SPECIFIED). See Paragraph 4, "Hypergeometric Probability."

The problem is to find an integral value of m such that

m-2 rn-i
I Px < L p< I p (D-6)

xnk xuk

A first approximation is obtained by using the method of Appendix C,
Paragraph 3 to solve for z from the observed values of n and ko then applying
the transformation,M k - + ÷1z (N n l + . D 7

The quantity 0 _<, < 1 is necessary to insure that m is an integer. A study of
Fig~ure 6 will Aveal why Equation (D-7) is a suitable transfozration.

In actual practice, e need not even be determined. Instead, the estimateof m from Equation (D-7) is truncated at the decimal point, yielding m-l.

*-2
i;' Next Z px is computed from the estimate of m-l, (see Paragraph 3, above).r I is not nece tary to acmute the second integral of Equation (D-6), since

rm-i m-2

xkxk xu
A and both members of the right-hand side already are available. I

If the inequality (D-6) holds, the problem is solved. If not, the estimate
of m-i is adjusted by unity and the last process repeated. (Only pm or r-2' as
the Case may be, need be computed.)

2. ,295
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B. COMMUTNG ThJE "MEST ESTIMATE OF X. Pa NUMR OF DEFECTIVES."

The problem is similar to that discussed in Paapph 4, above.

Fire a Mationg to R and R are obtained by using the Method Of

Append C Paragraph 4 to p te I and II then , ransfoziing the variables.APPen{dI.C C• Pah•• = ue|

Seveal valuee of oth �the siyTple and cumulative probabilities are conMuted

for arOuments near the estimates of Rc and Rt, The results are tabulated and

inspected. The siple rsetangles are discarded one at a time, beginning with
the smallest in area. The process stops when one n=re step would reduce the
reaining integral (area) to less than the value of L.

The "umxiru likelihood estimate" is merely the value of x associated
with the tallest reotangle.

Li!
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ESTIMATION AND PREDICTION OF CONFIDENCEDA
RELIABLE LIFE FROM SMALL SAMPLE SIZES

Eugene E. Cop pola
Benet Wea pons LaboratoPy

Watervliet Arsenal
Watervliet, New York

RELIABLE LIFE AND ITS LOWER CONFIDENCE BOUND. Reliable life Is that
time S during which a specified proportion R of a population of devices

will operate continuously without failure. The proportion R is called
the reliability. Reliable life Is important for devices that fail cata-

strophically, that is, failure of the devices generally results In dis-
truction of the devices and possibly destruction of surrounding equipment

and injury or death to operating personnel. Cannon components such as

tubes, breeches and chambers fall into this category.

that the device be operated only during the time when the probability of

* failure is low. The reliable life for a new device, however, is not

known and hence it must be estimated from test data. In additions for

gun components, A confidence requirement is added. Namely, it must be

sonwith a specified confidence level C that the actual reliable lifp

exceeds a given value. In other words, what we want is a lower confi-
doene bound T at confidence level C for the reliable life S. The lower
confidence bound will be called lower confidenced reliable life (LCRL).
Note that when applied to cannon components, reliable life is usually
called safe life.
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The testing of cannon components is quite costly and time-consuming.

Consequently economic and time considerations greatly limit the number

of components that can be tested. This number, the sample size, Is gen-

erally around six, although In some instances it has been as low as three

and as high as 20. If the reliability were low, then this restriction of

sample size would be relatively unimportant. However, the reliability for

cannon components is generally specified to be 99.9 per cent. Further,

the confidence C is generally specified to 90 per cent. On first glance,

one might imagine that the smallness of the sample size would give highly

undesirable results in calculating S. This is, however, not always the

case, as we shall see below.

THE LOGNORMAL DISTRIBUTION. Because of the smallness of the sample

size, non-parametric methods do not give satisfactory results. Conse-

quently, it is necessary to assume that the failure times follow a dlis-

tribution of known mathematical form. The lognormal and Weibull families

of distributions are usually used for this purpose. In this paper, we

will restrict ourselves to the lognormal family.

A real-valued random variable X Is said to follow a lognormal dis-

tribution of X is positive with probability 1 and log X follows a normal

distribution. The normal distribution of log X will depend the two usual

parameters,P and a , defined by uP E (log X) and c Var (log X). These

two parameters are also the parameters of the lognormal distribution of X.

In terms of the parameters, the reliable life S is given by:

S *exp (W.-a0)
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where zRis the 100 R'th per cent point of the standard normal distribution.

Assume that m specimens have been tested to failure, with the failure

times being .xl, .. , xm. We further assume that the specimens were randomly

selected from the populution and that they are independent. Then the maxi-f

mum likelihood estimates (MLE's) of P, a and S are given by:

0~ ~ ~ r!lgJ 6 (logX
JaJ_

The LCRL 'Sis given by:
*exp(O-OK)

Where Km is a tolerance factor that depends on m, R and C. Values of Km

for various m, r and C have been tabulated and are readily available In the

statistical literature. Note that since we are most interested in examin-

ing the sensitivity of the LCRL to the sample size m, we have added a

subscript on to the LCRL notation Sm to emphasize that Sm is being calculated

from a sample of size m.

STATISTICAL PROPERTIES OF 'm. To eliminate the parameter p, we con-

sider Sm/S rather than Sm. The distribution of tSm/S, in fact, does not

depend on the parameter P; it does, however, depend on m, R and C and the

parameter a. Now, t is generally not known. However, from past experience

it appears that for cannon tubes and breeches, a will be between 0 and 0.3

In the vast majority of cases, with an average value of about 0.2. The

expected values of Sm/S and (Sm/S) 2 are given by:
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E F ) 1m a 2d

F aL
Sm 2expl[2oz +o2(1.~+L2)]

where Lm • (2m) Km

By evaluating these, the mean and variance of 'im/S may be determined.

Table 1 shows the expected value of •Tm/S for R - 0.999, C s 0.9 and

for various o and m. Since we would like 5m to be close to S, values of

E("Sm/S) close to I are most desirable. However, since Sm ! S with prob-

ability C, we should have E (Sm/S) <1 . As can be seen from Table 1,

E (Sm/S) is much smaller than I for very small m. For example, for a

0.2 and m - 3, E (Srm/S) is approximately 50 per cent. This means that

on the average, Sm will only be half as large as S. For the developer.

this means that if a policy were adopted that LCRL were to be based ex-

clusively on samples of 3, then the developer would have to insure that I
on the average the actual reliable life of the equipment be twice as large

as the reliable life he desires to demonstrate. For this reason alone, a

policy of basing LCRL on samples of 3 is highly undesirable.

*'. It should be no surprise that m a 3 gives undesirable results. What

is surprising is that for m not much larger than 3, the results are not

too bad. The author finds it remarkable, for example, that for m a 10,

one will obtain'erm on the average about 77 per cent of the actual S.
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Table 2 shows the variance of Sm/S, A variance near 0 is most desir-

able. As can be seens the variances for very small mn are relatively far

from 0, For 0.2, the variance is fairly small for mý 6 and changes

relatively little with increasing m. Use of any of the standard Inequali-

ties such as Chebyshev's Inequality shows that even for relatively siral.1

im, Sm/S will tend to be fairly close to Its expected value.

Hence, the restriction to small m, whole not ideal from a statistical

viewpoint, is not especially damaging either, provided m is not too small,

In fact when : is close to 0, the LCRL will have quite good properties.

THE EFFECT OF INCREASING SAMPLE SIZES. Although in some cases small

m may give acceptable results, in other cases small m may not be as desir-

able. Let us investigate the following question: m specimens have been

tested. What would happen if we tested an additional k specimens and added

them to the sample to give a sample size of m + k?

The question is of more than academic interest. For example, Table 3

shows the probability 'that by adding one more specimen to the sample, we

can increase LCRL. As can be seen, it Is likely that LCRL will increase.

If the amount of increase is sufficiently large, it may be worthwhile to

test one or two more specimens.

Assume that we have a sequence X1, X2, X3, ,, of independent, randomly

selected failure times, For each m, let

E logi X E (og X _0. )2• J u l J -1

301exp(A8
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*m, am and 9m are just the MLE's and LCRL that we would calculate from the

first m failure times. To see the effect of adding k additional specimens

to a sample of m, we want to study Sm in relation to Sm+k.

Define lo8g -logS

"I m~

The distribution of Tm,k does not depend on either w or a , so that Tm,k

can be used whatever the actual values of these parameters. A knowledge

of the distribution of Tmk is useful for the following reason: Once m

specimens have been tested, we can calculate 'S'm and Om. The only unknown

quantity in the definition of Tmk is Sm+k. Consequently, probability

statements concerning Tm,k can be translated into probability statements

concerning Sm+k. In particular, we can construct prediction intervals for

Sm+k in terms of ým and m, as follows: Assume p (o<pl) is given and

that we have determined two numbers tI and t 2 such that

This last equation is equivalent to:

??(meP(~1 ~~m+k Sm+k 6X(mt2) p

Consequently, ( exp(t) t 9m+kexP( m 2d ) will bea prediction interval

for i•'+k at level p, .1
An interesting fact about Tmk is that with probability 1, Tmk is

bounded from above under a certain mild condition. In fact, T can be written

in the following form:
!~ zi

C~ (1 _ý 1/2 +K
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whpre C (.k)/M

(-a)' /2,

2 "M+k "m+k

S1 z is standard normal, x is chi-squared with k-i degrees of freedom,

y Is chi-squared with m-1 degrees of freedom and x, y, and z are inde.

pendent. (Note: we assume here that mr 2. We allow k 1 and interpret

" a chi-square variate with 0 degrees of freedom as a random variable which

takes the value 0 with probability i). The function given in(i)above will

take a maximum value if C2 ) CI, and in this case, the maximum value is

SKm - (c)-c~)l 2  The condition C27 C1 is equivalent to:
K.2  M (2)I When this inequality is satisfied, the maximum value will be

mK -k 1/2

Consequently, when inuquallty 2 is satisfied,

m'k Mk

.rhis is equivalent to:

M+k mk) with probability 1. Inequality(2)will

not be true for all m and k. (In fact, as k , the left

side of (2) approaches zR while the right side dpproaches -. Hence,

Inequality(2)will not be true for large k). However, (2) will be true for

m and k of interest in this paper. Fer cxamnple, when om 6, R . 0.999 and

C * 0.9, Inequality(2)will bo true for k t 50.

The distribution of Tmk for R • 0.999, C • 0.9 and for some m and

k have been determined by Monte-Carlo simulation. The cumulative dis-

tributlons of Tm,k for m - 6 and k - 1, 2, 3 and for m 1 10 and k 1 1, 2,
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3 are shown. Note that for m u 10, the bulk of the distribution is con-

centrated near 0, so that adding up to 3 more samplea to an already-

existing sample of 10 will probably not produce much change in LCRL. For

m - 6, the distribution is not so closely concentrated near 0. However,

depending on the actual numbers involved, the prediction intervals may be

fairly tight.

As an example, consider the following six failure times: 2596, 2536, 2811,

2141, 2416, 2839. We calculate from these:

S7.841•.• 86
6 a 0.09493

S6 w 1427, for R =0.999, C - 0.9

Now suppose that the original test plan is to test 8 specimens, of which
•'the first 6 gave the failure times above. Then prediction intervals for

r$7 and S8at a level of 90% are

S7 1305, 1554

S8 1265, 1649

SThe figures on the right represent the upper bounds mentioned above. That

is, with 100% confidence, S8i5 1649.
SNow, if the original aim of the test was to demonstrate a reliable

life of 2000, it is clear that this will be impossible. For after all 8

specimens have been tested, the LCRL cannot be higher than 1649. Conse-

quently, the testing can be halted after 6.

Suppose instead that only 1500 reliable life was desired. From the

distribution of T6 ,2 , we can calculate that 1500 is a lower prediction
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boud o S t alevel of approximately 70 per cent. One can therefore

be fairly confident the test will show at least 1600 reliable life. On

Sthe other hand, ifonly 1250 reliable life were desired, then one can be

about 90% confident that the final results will show a reliable 11ie of

at least 1250.

1 :IVA
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TABLE 1

Expected Value of Sn/SR

R - 0.999, y - 0.9
n 0.2 0.4 0.6 0.8 1.0

3 0.471 0.354 0.348 0.334 0.332
4 0.577 0.424 0.374 0.363 0.359
5 0.641 0.479 0.408 0.386 0.380
6 0.684 0.522 0.439 0.402 0.397
7 0.715 0.556 0.469 0.420 0.403
8 0.739 0.584 0.491 0.438 0.412
9 0.757 0.607 0.512 0.465 0.422

10 0.773 0.627 0.531 0.471 0.434
11 0.786 0.643 0.548 0.485 0.445
12 0.797 0.658 0.564 0.499 0.45613 0.806 0.671 0.577 0.511 0.467
14 0.814 0.683 0.589 0.523 0.476i5 0.822 0.694 0.601 0.534 0.486
16 0.828 0703 0.611 0.544 0.495
17 0.834 0.712 0.621 0.554 0.504
18 0.840 0.720 0.630 0.562 0.512
19 0.845 0.727 0.638 0.571 0.520
20 0.849 0.734 0.646 0.579 0.52721 0.853 0.740 0.653 0.586 0.535
22 0.857 0.746 0.660 0.593 0.641
23 0.860 0.751 0.666 0.600 0.54824 0.863 0.756 0.672 0.606 0.554
25 0.867 0.761 0.678 0.612 0.560

Ot!
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TABLE 2 .7V
Variance of Sn/SR

R 0.999, y 0.9

a 0.2 0.4 0.6 0.8 1.0 4n .:

3 0.132 0.279 0.602 1.598 4.700
4 0.091 0.199 0.384' 0.809 1.916
5 0.068 0.156 0.281 0.523 1.064
6 0.054 0,130 0.225 0.388 0.709
7 0.045 0.111 0.190 0.311 0.528
8 0.038 0.097 0.166 0.262 0.421
9 0.033 0.086 0.147 0.228 0.353

10 0.029 0.078 0.133 0.203 0.305
11 0.026 0.071 0.122 0.184 0.271
12 0.024 0.065 0.113 0.169 0.244
13 0.022 0.061 0.105 0.156 0.223
14 0.020 0.056 0.098 0.146 0.206
is 0.018 0.053 0.092 0.137 0.192
16 0.017 0.050 0,087 0.129 0.180
17 0.016 0.047 0.083 0.123 0.170
18 0.015 0.044 0.079 0.117 0.161
19 0.014 0.042 0.075 0.111 0.153
20 0.013 0.040 0.072 0.107 0.146
21 0.013 0.038 0.069 0.102 0.140
22 0.012 0.037 0.066 0.098 0.134
23 0.011 0.035 0,063 0.095 0.129
24 0.011 0.034 0.061 0.091 0.125
25 0.010 0.032 0.059 0.088 0.120
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TABLE 3

Pr (Sn÷1 'n) >
• o0.9

R 0.999 0.99 0.95

2 .821 .819 I815

3 .797 .796 .793

4 .783 .782 .780

1 .774 .773 .771

3 .766 .765 .763

14 .73 .759 .734

57 .760 ,736 .7331.73 .755 .755

17 ~~~.753531.2

1 .732 .750 .749

20 .748 .747 .743
11 .746 .746 .744

12 .743 .742 .732

13 .741 .740 .736

14 .739 .737 .734
is .736 . 736 .733

16 ,736 .736 .729

17 .733 .731 .728

2s .733 .730 :728

19 3730 .730 .728
S20 .729 .729 .7125

21 .728 .727 .724
,:•22 .727 .727 .2

23 .726 .725 .723
,. ..24 .726 .726l .723

jA
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SEQUENTIAL ALLOCATION OF OBSERVATIONS IN THE
EXPONENTIAL SELECTION PROBLEMi

Robert. M. Wharton# Ph.D. R. Srinivasan, Ph.D.
Thomas Jeffeerson University Temple University
Philadelphia, Pennsylvania Philsdelphia, Pennsylvania

A39,UM Two sequential data-dependent allocation rules for assigningpatiotns 16lnieal trials are explored in this paper. The objective of thedsigns is to test the null hypothesis that there is no difference in meoan

survival times associated with two treatments where survival time in assumed
to be exponentially distributed and at the same time to minimise the number
of patients assigned to the Inferior treatment. Both the single patient and
multiple patient entry cases are discussed.

1,. ZNTRODUrTICI This paper is concerned with protocols for clinical
trials in which e desire to determine whether there is any difference in the
effects of two treatments. We will base our decision on some measurable
"response associated with a treatment (i.e. survival time, time to remission,
eto.). We also assume that patients arrive for treatments sequentially in
time either individually or in groups.

Moet clinical trials addressing this question require approximately
equal numbers of patients to be assigned to *eah treatment. Now suppose it
becomes clear to the treating physician that one treatment is better than the
other before sufficient patients have been accrued to reach a decision with
the significance sad power specified in the original trial design, He then
faces an ethical problem. He can not continue to treat patients with an
Interior treatment and yet by terminating the trial prematurely, he may lose
Information which would be Invaluable in planning the treatment of many future.
patients.

To reduce this ethical problem, it would be useful to design the olinical
trial using the data collected up to a given point to choose the treatment
for a patient entering the trial at that point. The aim being a design whinh
tends to assign the majority of the patients to the superior method of trea+.,,

* meont, while meetine the classical statistical criteria Of Significance and
powers

rFo the exponential selection problem in which we test the null hypothesis
that there is no difference in mean survival times associated with the two
treatments whee survival times are assumed to be exponential with paeAmeters
(death rates) depending upon treatment, Flehinger and Louis (1971) have investi-
"gated a whole range of sequential data-dependent assignment rules ranging from
strict alternation of troatment to assignment of treatment with lower estimated
death rate. Clearly the most data-dependent allocation rule would be to assign
the next patient to the treatment with the smallest expected death rate
(maximum likelihood estimate). Unfortunately this rule would often have the
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effect of allocating an overwhelming proportion of patients to one or the
other treatment and thus extending the length or the trial Iradefinately
(Armitage 1975). To reduce this diffioulty Ilehinger and Louis have pro-
posed the following rangoe of allocation rule.n

Let Din I the number of deaths of patients treated by
nethod 1. by time z

Tin * the total time lived by patients treated by
method I by time ni

y m be a constant between 0 and I

then at time n

a) if IDe - D2nj 0 yn and Din < D t2n reatment I is used whereas

if Din • D treatment 2 in uaed
In •2n

b) ifjDPn-D 2nj "nand Di j/Ti n 4D / T

Treatment 1 Is used whereas If Dn I ?n /I D2n /T 2n treatment

2 is used,

2. AL A0 Q ULWe wish to examine two further allocation rules.
The first %re e ae situation as the Plehinger-Louis rules (ie. exponential
Survival time, patients aLriving sequentially over a period of time and being
asligned Immediately to a single treatment.) This allocation rule which we will
refe' to as R1 assigns treatment to the next three incoming patients based on
accumulated data with two of the patients receiving treatment 1 if it has the
smallest expected death rate and one patient then receiving treatment 2 and
the reverse if treatment 2 is associated with the lowest expected death rate.
If the two treatments have the same expected death rate then the treatment
given to two of the next three patients is reversed from that of the previous 1
triple of patients. This relatively simple rule overcomes the difficulty of

an overwhelming proportion of patients going to any one treatment and to
comparable to the Flehinger-Louis rules with respeot to Average Sample Number
(A., ..) and Inferior Treatment Number (XT.N.).

It also has the advantage that it ca be extended in a natural way to the
case of multiple patient entry. We will only oeneider here the situation wherethree pqtienti arrive fre treatment every third day but the suggested approach

can easily be extended to a more general setting In the three patient entry
case as in the above allocation rule we assign two of the next three patietits
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to the teatment which has the smallest expected death rate on the basis of
acoumulated data. We shall refer to this allocation rule as R3 * The
protocols for clinioal trial* ut.liUing R1 and R3 M open squential
design which terminate when the likelihood ratio crosses a given boundry.
This is also true of the Plehingeo-Louis rules. Coaparisons of RI and
13 -idth two allocation rules denoted 32 *And PA Involving stricit
alternation ae presented in Section 3-, These results have been obtained
on the basis of computer simulation with 1000 replications for each entry.

3. VPINITIONS AN SM LA N LUULTS.

It is assumed that there are two treatments Available. A patient io
given one of these treatments at a point in time, after which his remaining
life length has an exonential distribution, the death rates X and
depend upon the treatments. The clinical trial is intended to choose one
of the following hypotheses a

Xo )1z •2 1 i 2• 1~ 1 H2 X ,. )2 :

where k o 1 in chosen in advance an a ratio which represents a medically

significant difference.

A11pppt~en Ruetil'a!

For any given time t after the trial begins,

Xitbe the ti~me lived since treatment if h isstl

saive for a patient given treatment i at time J.

. be the time lived from treatment to death if he has died.

Dit be the number of deaths of patients treated by method I by time to.

Ti be the total ti.n lived by patients tresteo by method I by time to.

We consider four allocation rules denonted 11 thr 4 R,

RI The patients arrive one per day but the treatment plan for the next three

(3) days is defined every third day by randomly assigning one of the two
treatments to two of the patients and the other treatment to the remaining
patient in the triple. Which treatment is used twice is determined by the

following rile! I
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T 2
t  treatMent to used

At./ T. it V j . / T2. treatment 2 to used

12 Dt,~ / T It 0 D1 t ' 2t .Change from previous sssigni"t
; d 1"""2 to simple alternation of treatment one and twa, with the

treatment for the firs ptintrmdomly selected.
13 Three patients &=?Iva on the first day and every thi.rd day thereafter.

the treatment received by the majority of the next triplet is determined
by the same rule used In RI,

,4 The patients arrive to in R3. Treatment one or two is randomly seleotedo
sand this treatment ise randomly aussigned to two of the 3 patients ooth

4the thid patient reoeiving the other treatment. The treatment scheme
in reversed for the next 3 patients.Ii DThe termination rules considoedo• utilize the liklihood rato's

.%
L 2t (T +4 T2t) /(TIt4 +'Wt (')It+ D2t)

and are of the forms select two numbers A and I Bwith A < I - D.

SEa i (Lt1, Lat) < A "• terminate and accept H0

Pax (Litt L2t):0 I3 Terminate and socept Hi where I corresponds

,A I mx (Lit, Lat) _ C * continue testing.

flehinger and Louis (1971) showed that for k a , A I and B 30,"
& iv significance level of .05 and a power of .95 .These values were

used In the results that follow.

The authors ae currently working on more extensive computer simulations
of the schemes presented here for the exponenti,1 and similar results for the
normal case. The implications of introducing further randomimation and its
effect on selection and trend bias are also being explored.
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PcRFPORM• CM OF' PROTOCOLS
A*,1 *30, kw2

xl " ' 10 i•1

.03333 .99 47.8 18,

.04 .993 56.2 21.)

.05 .953 76., 28.6
.o6660 .554 104.? 38.7
.075 .315 107.7 42.5
.10 .053 82,3 .
.15 .555 10?7,3 40.3
.20 1955 71.4 26.1
.25 "94 49.7 1810
.30 L.0 40.1 14.7

*-I1* *1 *,41*e *41*,1

R2
•, ~L ,•.____ .T.,

.0)333 .999 44,0 22.0

.04 995 3.0 26,.
05 .o0.0 35.0
.06667 .568 97.0 48.5
.0?5 .319 97.0 48,5
.10 050 ?6.0 810
.15,i6 94.0 4?,
.20 .9,, 64.0 32.0
S.25 .992 47.0 23.5
.30 .999 37.0 18,5'I *41*t41* *14141 41*,1(4

R3 '
.03333 1.0 47,0 17.?
.04 .998 52.3 19.7
.05 :968 67,6 25.3
.06667 .6t3 98.8 37.9
.0?5 .397 100.2 39.5
.o ,0o? 81.1 ..
.15 .565 106.3 39".7.20 .961 ?2.3 27.5.25 .995 4,5 17.8
.30 1.0 38.5 14.0
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p:991.7 43.5 21.7
5 2997 12, 26,1

.965 662 3,31
.0666' .579 !04.5 52.3

.07M .293 102.7 51.4

.10 .052 79.5 39.8

.13 .558 101.9 50.9

.20 ,956 65,4 32.7

.25 .992 43.7 21.9
30 110 34.9 17.4

41'11"11' e f 41,,11.41

1. Amitase, P. (1975) m Medical i Blacokwell

2. Flehlnge•', B.J., Louta, T.A. (1971) Sequential frnatment Allocation in
Olinlesl Triale, Niome*.•il 58, pp. 419-26.

316

S', 316



Maximum Likelihood Estimation of 12D

for inoculated Packs

Edward W. Ross, Jr.
Office of the Technical Director

U.S. Army Natick R&D Command
,Natick, MA 01760

,Abstract. This pape describes a statistical procedure fori i stimating the 12D dome in the radiation-sterilization of
,'.canned food, using data from an inoculated pack experiment.

The method assumes a two-parameter distribution, of which
the shifted-exponential is taken as a prototype, and uses

,4I the maximum-likelihood principle to estimate the parameters
and hence 12D. The procedure is embodiad in a computer pro-
gram which estimates 12D and provides oonfidence limits on
both 12D and the kill at zero dose. The method is illustrat-
ed by an example.

I. Introd otiLo. This paper is concerned with methods for
assessing the effectiveness of ionizing radiation as a means
of food-preservation. In particular, it deals with the prob-
lem of estimating the 12D dose, using the data obtained from
an inoculated pack experiment. A number of papers have dealt
wholly or partly with this question, including those of
Anellis etal. (1969, 1969, 1975), Grecz et al. (1971) and
Ross (1974, 1976). The general, problem in one of determining
a dose-response function and is discussed by Finney (1952).

The purpose of the present paper is to describe a method
of data analysis, based on the maximum-likelihood (ML) ori-
tenlon, for estimating 12D from inoculated pack data. An
example will be presented, showing how the method works.

The ML method is a very widely-used procedure for deriv-
ing estimates of unknown parameters from experimental data
and is described in most books on mathomatical statistics,
e.g., Hoel (1971). It seems not to have been applied in
analysing inoculated pack data, possibly because it leads to
complicated formulas that can in practice only be solved
with the aid of a high-speed computer. Despite this draw-
back the ML method is worth considering because it can
extract more useful information than other procedures from
the same data.
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2. Theory. This section is divided into two parts, dealing
with the Tnoculated pack experiment and a description of the
ML method. 4

2a. The Inoculated Pack Experiment. The inoculated pack
experiment consists of inolatIn cans of the food sub-
strate with a large number of the test-microorganisms. The
cans are then vacuum-sealed, groups of them are exposed to
different doses of radiation and then incubated. After in-
cubation each can is examined to see whether it contains sur-
vivors. In the example described latert the test microorgan-
isms were spores of ten strains of Clostridium botulinum, the
incubation period was six months and the method of examination
was the recovery of viable botulinal cells.

If we denote the different groups of cans by index, 1,
1 - 1,2,..., M, we definae

't;i dose which the i-th group received.

n number of organisms per can in the i-th group.

Ni - number of' cans in the i-th group.

K - number of sterilized cans (i.e., cans without sur-vivors in the i-th group.

Usually the experiment is designed so that all n are approxi-
mately equal, and all N are the same. This simplifies the
experiment and analysis} but there are advantages to be gained I
by varying n1 and Ni. In any case, the procedure described

here applies to the situation where ni and Ni may all be dif-ferent.

The data consist of xi, n1 , Ni and Ki for i w 1,2,...1,-
where x and n are non-negative numbers and N1 and Ki are
negativl integers. The data-analysis must deduce an estimate
of the 12D dose from this data.

2b. The ML Method. The method described here is based on
the general probability theory for inoculated packs, see Ross
(1974).

It is assumed that under the test conditions, the
probability that an individual organism will be killed at
dose x is given by the distribu- " function G(x), the sur-
vival probability being l-G(x). The 12D-dose, which we denote
xc, satisfies
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The probability that a can containing n organisms will be
sterilized (i.e., all organisms will be killed) at dose x
is denoted by O(x). O(x) and G(x) are related by means of

n
O(x) - £G(x)] (2)

or, approximately for n large and I-G small,

*(x) e-n G x)
(3)

G(X) - 1 + n" Zn 0 (x) (4)

In the inoculated pack test at dose x, N, cans are
exposud each having O(x ) , 10 as the prob1bil ty of
sterilization. The pro abili•y that Ki cans are sterilized
at dose x, is liven by the binomial diAtribution

0i" Ni - Xi (5)

So far, nothing has been assumed about the form of the
function G(x). We now assume that G(x) has a general form,
G (Xi B1 , BS), by which is meant that G depends not only on
x (i.e., dose) but on two other quantities, Bi and B1, which
are independent of dose. For example, assuminq a shifted-
exponential distribution for G(x) means

G fx) a 1 - exp (-B, (x'-B 2y)

SI If Bi and bg were known, we could immediately estimate 12D
by solving Equation (1), which becomes in this case f
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X 1 x 0-12= 1 - eXp {_B; (NO B2)}

ro

X - B2 + (12 in 10)/Bl B, + 27.63/9,

•,Usually we do not know B, and B2, and our problem is then

to estimate thorn from the inoculated pack data.

The ML method tells us to do this by choosing B and B2
so that the probability (likelihood) of getting the observed i
experimental results is as large as possible. If B and B2
are given, then 0 is known and Pi is the likelihood of get-
ting the observed outcome at dose xi. Since the cans at dif-
ferent doses are tested independently, the joint likelihood of
getting the observed experimental results for all the M doses

P "P, P't ...PM

The ML procedure directs us to find B and B2 so that P will
be maximized. This is equivalent to maximizing :

M
r- ln P E•ln C + K1 ni + (N)-K))ln(I-i (6)

where ,:

K Ki (Ni-K )I

0 * exp (-ni (1-Gi).

The usual procedure for finding BI and B2 is to solve the
equations

•:,ar/,•Ila o

ar/aB2 " 0.
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The plausible forms for G(x) all lead to equations which are

V-1 too complicated to solve by simple formulas. Usually one
uses, instead,p it uccelsive. approximation scheme, like the
one written in matrix form am

0 * (r" 1 r'(7)

where[01 Fs1 r 1
82L0 /J L2J Pr/aB

a2r/aB B a2ri/a 321 12

In using this, an initial guess is made for B, and B1. The

terms on the right of Equation (7) are evaluated for those
values of B, and B2 and the quantities $I and 02 are calculat-
ed using Equation (7). These are then taken as the new values
of B, and B2 and the process is repeated. This continues
until the O's and B's are equal to some desired accuracy.

The properties of this Gauas-Newton iteration scheme
are reasonably well-known. It converges if the initial
guess is good enough, and the Hessian matrix, P1, is positive-
definite. if it converges, the inverse of the Hessian Matrix,

(F")'giveq the estimated vtriance-covariance matrix of B1
and B.. However, the method may occasionally fail to converge.'

Given any assumed form for G(x), one can write explicit
formulas for the quantities ar/aBj, ar/aB2 , a2ra,ABa l11/aB 1aBj

etc.. as functions of B, and B2, These formulas are necessary,

but they are complicated and not especially informative, so we
omit them.

The calcuilations involved in carrying out the ML methord
are obviously very tedious. However, the author has prepae
a FORTR~AN computer program which does the calculation of B
and B2, then finds the 12D dose, x *The program also fires

confidenve limits on xc and the logarithm of the survival
probability at x-O. it does all of theuse calculations for

oz each of the following five general forms of G(x)i

, 4
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OWx) =. - *xP{Bl(x.32)) shifted exponential

0(x) u i - e -'(B2x) ) Weibull

0(x). ,, 7{B1(x-32)1 normal

0 (X) - 78 {BlLn(x/B2 )) lognormal

0(x) * 1 - exp(-B 1x) unshifted exponential

Swhere

wheF F(Y) J(27rY'l/2~t2/2dt

The program .eceives the inoculated pack data as
input, including doses where all or none of the cans are
sterilized as well as partial spoilage doses. It first
carries out least-squares fitting of the data from partial-
spoilage doses only, obtaining in this way initial estimatesof Ba and Ba for all five forms of G(x), These are used to
start the ML rethod. Having found the optimizing (i.e.,
maximizing) values of B1 and Bi, the program also finds for i
each form the eriAntity

14 (xK - )2

This is distributed approximately as a xI-random variable
with M-2 degrees of freedom and is an overall measure of how
well that form can be made to fit the data.
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3. E . In this Section we describe an inoculated
pack at was recently carried out at the U. S. Army
Natick R&D Command and shows the results of using the pro-
posed method of data analysis.

An inoculated pack was done at -30 0 C using C. botulingm
-spores in canned pork. The data (Anellis, unpubTished,
based on can-swelling) are shown in Table 1. The results
from the preliminary least-s uares (LS) fitting and the final,• i maximum likelihood (ML), estimates are shown in Table 2.
Figure 1 is a graph of the data points and the four distri-
butions fitted by the ML method.

Examining the ML results, we see that the normal dis-
tribution predicts that the entire 95% confidence interval
of Z lies below -1, i.e. there is more than 90% kill at zero
dose with 95% confidence. We therefore discard this distri- 4bution. For the exponential distribution ML predicts a very
small shift (2 - -. 23) whose 95% confidence limits straddle
zero. There is, therefore, no reason to conclude that the
shift is non-zero, which means that in this case the simple-
exponential hypothesis is acceptable (i.e., it is not contra-
dicted by the data). Similarly the Weibull shape parameter
is very close to 1.0, B a .9733, which also supports this
hypothesis. These two distributions give almost the same
12-D dose, x - 3.99, and the 12D-dose of a simple-exponential
is x n 3.o3r The Schmidt-Nank formula yields xK M 3.76.The C lognormal leads to the estimate x€ 4.11.

The theoretical value of x' is X1 ((.95) - 9&49#M-2 4.
which exceeds the computed X1 for all four distributions, so
we have no evidence against any of the four distributions on
grounds of goodness-of-fit. .1

In this case we can adopt a procedurally conservative
viewpoint and reason as follows. In the past, the simple
exponential has always been used. The data does not refute
its use here, so we may conclude that the distribution is
exponential, the best 12D estimate is 3.89, and the 95% con-
fidence limits are 3.62 S x s 4.32. An alternative algo-
rithm is to suspend judgment on the distribution but use the
largest 12D-value given by any acceptable distribution.
This leads to use of the lognormal estimates, c - 4.11 and
3.73.$x€ 5 4.77. J

Either of these two viewpoints can be taken in this
case and the two 12-D values obtained are not statistically
different at the 95% confidence level. Also in practical
terms the difference between 3.9 and 4.1 megarads for 12D
is not very important. ,
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4. Discussion. The ML method has tho following advantages:

(i) It is a generally accepted statistical procedure.

(ii) it is a very flexible method that can be used
with many different assumed distribution functions.

(iii) Because it uses the data at points where Ki 0
or N~ it comes closer than existing methods to using

all the information that is in the data.

myit has two drawbacks, namely, it is complicated and
myoccasionally fail to converge. The former is not a

problem since a computer program already exists for it, and
the latter happens very rarely in the writer's experience.

On balance, it appears that the ML method is promising
*and deserves further study.
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:1. ± Ni KI

2.0 1,83x10 100 0
2.2 " 100 11
2. 4 it100 51
2.6 " 100 85
2.8 100 98
3.0 100 100

Table I: Livel!ing data from
inoculncd pack for Q, bo_-ulin&M
in i•.").diated canned pork.

,xp We .b Normý Logn,

ML LS ML LS ML LS ML LS

2.5 - 2.5 - 2,5 - 2.5 -

18.o - 18.0 - 5.0 - o -

B 1  6.963 7.751 .9733 1.059 1.247 1.351 3.015 3,34 5

B2 -. 077 .171 7.771 6.151 -1,932 -1.601 2.507 2.io4

95% x 3.616 . 3,559 - 3, 469 . 3.730

12D1 x 3.891 3.736 3,895 3.738 3,710 3,606 4.113 3.897
95% x 4.315 - 4.473 - 4.079 - 4,773

!9! ,Z l.z• ,'r43 .. -- - -2. 1
L

Z -.232 .576 - - -2.097 -1,815 - -

95% Z 1.278 . . . -1..433 - - -
u

r, -10,07 -11.11 -10.09 -10.73 -9.59 -10.17 -10,58 -11,59

2.93 6,03 3.00 .,03 2,20 3,94 3.75 6.93

Table 2: Maximum likelihood (ML) and Least Squareo (LS) estimates for
four diatribution-forms, barind on data in Tblo 1, Z w iogi (aurvivul
probabilit,,, at zero docie). LN ofi.nle oyponential 121) F
3.829, BScumiat-,-I1an1h 1D I 3.755. lThQ LIS ro'nuItu are baced on the data
2,2.Ax (2,8, the ML ropulto in 2.0 x 3.0.
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-4

IR'

-2

A' -e2

'.:I 34 5a DOSE
e(survival lirobability) as a functionFigure li Grah ft logulof done in megarads for irradiated canned pork, based on viable

cells. Data points are shown an it and the four distributions
fitted by ML are shown as lines - We:bull,exponential, - -- - normal, ---- lognormal. t and T are the
95% confidence ranges for theoretical probabilities at doses
where no cans or all cans are sterilized.

326

..-.-.. .. .-.- -.-.. ... 
. ...... ..



, I

CONFIDENCE BOUNDS FOR THE GENERAL LINEAR MODEL

J. Richard Moore
Malcolm S. Taylor

USA Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

In this paper, for the general linear model Y - X0 * e, we con-
sider the construction of confidence bounds about the entire regression
line. To accomplish this we exploit a powerful theorem of Scheffd. A
procedure often encountered is one in which a set of confidence inter-
vals about E(yix) or rediction intervals for future observations are
determined and then the end points are connected in such a fashion as
to describe an envelope, The belief is that what has been accomplished
is precisely what ScheffS's theorem allows one to do.

In addition, we present some extensions concerning confidence
bounds about combinations of regression lines and suggest a useful
application of these results. Specifically, we propose to use the
confidence bounds about the difference of regression lines to make a
quantitative assessment of when and wheru independent sets of data
characterizing the same phenomena are in agreement or disagreement,
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1. INTRODUCTION

It is appropriate at the onset that we devote a few paragraphs
to the introduction of the general linear hypothesis model of full
rank, We want to consider uncorrelated observations y,, Y20 " " Yn
that satisfy the relationp

Yi " .x i8 • + ±i i l i 2, ,.,. n Cl ,l) 
.. '

and are linear in the unknown parameters 810 82, so" 8p with known

coafficients and random term ei satisfying

pB~yi . E x 0jE~~yi) ij

and

VarCyi) a

In other words, the random term e1 in a random variable with expected

value SCei) equal to zero and unknown variance Var(e,) equal to a

The proble m', in its most general sense, involves determining point and
interval estimates of several quantities of interest of the model and
the testing of various statistical hypotheses.

For compactness of notation and ease of manipulation let'YI •x l 11 x 12 x 
010

'C 1

X2p g2 *2 
'

Yn nl Xn2 . Xnp , n

then we can write the system of relations (1.1) as

* X + e

and proceed to define the general linear hypothesis model of full rank
as follows:
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41 Definition 11,. The model Y P+ ae where Y is a random observed
• •ocior, =s a random vector, X is an n x p matrix of known fixed
• ~quan~tieso and A is a vector of unknown parameters is called-the .:

•L general linear hypothesis model of full rank, provided the rank of X
is equal to p where p I n.

In the present inquiry we restrict our consideration to the nor-
mal theory case, which means the random vector e, already satisfying

8(e) m 0 and coy(s) a 2 will, in addition, be assumed to be normally
distributed,

The problem most frequently addressed is that of estimating the
unknown parameters on the basis of the observations yi. These

estimates of , denoted by 0, are functions of Y1 ; and, as such, are

themsolves random variables about which confidence intervals can be
constructed. These ideas are fully developed in a number of text-

books,)1 2 A point not so widely expounded is that the usual frequency
interpretation of a confidence interval based on a single sample
+"Y1, y2, ," yn holds only for a single coefficient 0,; if the same

data are used to determine confidence intervals for both 0 and 0

I J, the probability is not I-a that the confidence intervals thus
constructed will simultaneously contain 0, and 0,, The complexity
is advanced by the fact that the interval estimates are not independent;
so, in general, only a single confidence statement can be made from a
single sot of observations,

It is not our intent here to address this problem directly; such
an inquiry falls into the general area of simultaneous confidence
intervals, It is our intent, however, to consider a ramification of
this problem: namely, the construction of a confidence envelope about
the entire regression line, We will, in addition, provide some results
concerning confidence envelopes about combinations of regression lines
and implications of their use,

Toward this end consider the following definition due to Bose: 3

1 Oraybill, F. A., An Introduction to Linear Statistical Models,
Volume I, McGraw-ilill MR Eompay, Inc New York, I961

:2 As, C, RA, Linear Statistical Inference and Its Applications,
John Wiley g Sons, Inc., New York, 1965,

.3 Bose, R. C., "The Fundamental Theorem of Linear Estimation",
Proceedin 3 of the 31st Indian Science Congress. 1944, pp. 2-3.

' ~329



-F • . . ... . .. . . -. . . - , . ,o'

D~finiton 1 2_ A parametric function p is called an estimable function
f it-has an niased linear estimate, i.e., if there exists an n-vector

a of constant coefficients such that B(a'y) -

If L is a p-dimensional space of estimable functions with. basis

{1 * '" and i is the leatt squares estimate of c c L, then

we have the following theorem due to Scheffd4 .

Theorem 1.1. Under the general linear hypothesis model (normal case)
the probability is 1 - a that simultaneousiy for all c z L

r SA C; +~ So.

where the constant S • (pkypn-r)) 1/ 2 and rank X r.

The implications of thii 'theorem are far reaching; and in this
article we will exploit a stngle facet, albeit an important and useful
one, To facilitate this we need to be aware of the fact that since

least squares estimates 0 arf BLUB, the eloments of the vector 0 of
the general linear model ofelcit rank form a basis of a space L of
estimable functions which includes polynomials as a special case.

2. CONFIDENCE RBGION FOR A POLYNOMIAL

To determine a confidence region for a polynomial with observa-
tional equations

yi "0 + 81xi 02xi 4 ". * 3p-l +i' , 1, 2, ... , n

in the model Y a XK + e, the n x p matrix X * (x t) of known constant
coefficients takes the form

4 Scheffi, H, The Analysis of Variance, John Wiley Sons, I.c,,
Now York, 19,59,
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X 1 *

Xu2 2p-

The loast square$ estimate of 8 is given by 0 • (X'X)'Ix'y. If we

n

x 'C•X'(Xfx)'IY • E, aj>,choose i ,i01los, b 1 , 1 te a

where the coefficients simare the elements of the 1 x n vector
J X'(X'XX) '

0 0'

• otht 2 •oX(,.Z with unbiased estimate sX(')Zo

w roe t heofficientheosrem we can assert with peobability 1-x thatl n l and, in parhticular, Xu s L

AI A AA

Tlpp

where S a [pF (p,n-p)j]I 2
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As an illustration, suppose the paired data (1.20, 0.34),
(1.37, 0.94), (1.38, 0.99), (1.65, 1.58), (1.71, 2.08), (1.82, 2.25)

are characterized by Lhe quadratic y - -0.31x 2 + 3.97x - 5.95 over
the interval of interAst, 1 <. x L 2. The 95% confidencD region for
the entire true line is given by

X'S - (s.28)c. < X10 <. x (5.28)(.%

as shown in Flguro 1.

Grubbs 5 showed that for the case y = O+ 0 x the confidence

bounds resulting from Scheff6's theorem are

0+ 1 x 2Fn2,n-)] /2} (2.1)A xx 
.

n 1 /2

where S 1 E (yi -00 " 1) and A V nx 2 [2xi 2.

Note that the value x appearing in (2.1) i not limitod to an x which

appears in the observa*ions (xiyi), i I, 2, ... , n.

3. THE TWO-SAMPLE CASE

Suppose two independent sets o.f datq havm given rise to two
characterizations of the same rhenomenon so that we are now confronted
with what is, in essence, two models:

Y XI01 + el , an n1 x p, problem,

and

Y X2B2 + e2 ,ann 2 x P2 problem.

We can still represent this situasion as Y - X6 + e where now

5 Grubbs, F. E., Linear Statistical Regression and Functional Relations,
BRL Report No. 1842, November :975.
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iiin

iThe least squares estimate is given, a" before, by, ,' (X'X It.

Consider now the difference of two polynomials y* - y* r L with

LS estimate Xl 0 X- 0. where X* (1, xL, 0..0 x i"), Rewr.iting,

,* ,, ,* x ,* X , "•x,) ,,J

i1 1112 *1•nl~no i

where the coeffi•cients ai are the elements of the 1 x (nl+n2) vector

Ix*'(x~X,'x,. T-us,
' -l

tai2a x* x x * (XX) , 1X'] X, (X'X) X'X(XX)'x* x* (xlx*, *

S, ] l(X xl -l] 0NowX* - xf ." xj and (X'X)" - -I- - - }-
'I X I 0 ( -

so X* (.'X) X* X*(XIX1) X! + X* (X2 X2 )'X
A1 beo1 22 2 2X2

As before, Var(;) has the unbiased estimate 2 X

where s is now the pooled estimate of the variance, and with probability
a1 - a simultaneously for all e L
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1 i1  - 02 " y*Q X. $1 X. " 2 + s

• ~ ~1 / 2 , ..
with S Cin

:; • with S •((P1 + 2P•P P2' n1 + n2 (Pl÷ P2)1) '.

To illustrate one,of the most useful potential applica t ions of this . 2
result consider the situation where we are presented with two sets of data,1(xllyll)# (x12,Yl2)0 '(Xlnyln), { (x21,y2l)# (x22,Y22),, , (x2my2m)' .,

• collected from the same process; and we want to say something about the*;.,
similarity or dissimilarity of the two descriptions. Suppose each set is "•
fitted with a quadratic; and we construct the confidence bound about t.he .

•. ~difference y, 2 as shown in Figure 2. Over the region (1.66 %• x <, 2.05),:i
•'where the confidence bounds cover the line y a 0, we will say the two des-

criptions are conbiatent, although the associated probability level can- •

not be attached without qualification and in•t.rpretation.

The extension of Grubbs result (2.1) to this case is direct; thebounds take the form •

X* a X* 2 ( pl p2 )Fa(pl * p2, n, + n, 1 P1  P) /2 S s
2 2 P2,P2

[ 2 nl(X* - n2 (X X2 )

:! where S2is the pooled estimate of variance and A scopte ro h

i i-th data set.

i,!,,t i4. THE k-SAMPLE CASE

i! :i •The straig~itforward generalization to k sets of data proceeds as
•:... follnIws:

n1 nI

2 11 1_ _ 0 e1

* . . .. , L. _ . . . .2....e

* , . . ..

k' 0 I° 0 XkJ " •

" [ ~~~335..,'i

S".. . .............. .............. . .. .. . . . .. . .. ........ ".. ....... --- "



.I

'ill
V .11 U

IaI

1.1 I, 1.2 1,.1 1.6 1.6 2.11 2.2 2.4i 2.6 2.8 3.1

S J rFIE~l 2

i~~i. ~9S I (VI)ENCEIl LIMITS FM THE DIFFTE:RNCE IN TWO] LINNR FUNCTIONSH
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and

'k (Xk) kk

Now for X* a (X~ l X*kI) where XI 1, . ., x )

we can write * X * X* M (X Xj1XYj i - 11 2, a 9 p k.

Suppose we now consider the estimate of E~*

Ei* Ec1X* 0, EciXf (XIXi) XL'Yi. Rewriting,

Ec Xt±* Y*(IX

weethe coefficients a, are the elements of the I x Eni vector

'x Xx- 1 XI.

Thus,

Ea~ * CX*CXIX) XI[CX*C(XtX)X

CX* (X9x)'XIKX X 1CK

**CX* (K'X)1lCX*.
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K ~j Now

I k 2 1)

so C * (IcK) iX E C cK* The cofiecerein owasue
I.1 I kk i"Xt

Al -S(,CX*'cXX)-lCX*)1/2 E. ciy* EciX*fj S[OCX*'(XIXr1ICX*)112.

with S. (Ep1,F,,czPjEn± Epi))

For the linear case we obtain

E 2 + n (x0 o

and the two sample case (Section 3) is obtained by setting c1  I and
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Subject: Errata Sheet

TO: Recipients of Proceedings of the 22nd Conference on the Design of
Vi Experiments in Army Research, Development and Testing

The undersigned apoligizes for some errors in my paper "Induction on
a Markov chain" appearing on pages 177-186 of the proceedings. Four pen
and ink corrections will correct these errors:

a The denominator in Equation (5) should be -. q2 rather than
21lqiq 2 .

b. Equation (7) should be P(S2) = P(S2) rather than P(Sl) ' P(S2).

c. The numerator of the second term in Equation (11), following the
summation sign, should be

k i k-i(i)p q (k-i) rather than

k i k-i
( )p q (k-i)

d. The phrase between Equation (27) and Equation (28) should be:

"If k 0 +l -N/2 the above generalizes to"

rather than

"If ko+l N/2 the above generalizes to".

RIR.GER B
Mathematical Statistician
Quality Evaluation Division
Product Assurance Directorate
US Army Armament Materiel Readiness Command
Rock Island, IL 61201
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